Different rates of cognitive decline in autosomal dominant and late-onset Alzheimer disease.
Alzheimer disease
autosomal dominant Alzheimer disease
cognitive
comorbidities
late-onset Alzheimer disease
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
13
08
2021
received:
07
04
2021
accepted:
22
09
2021
pubmed:
3
12
2021
medline:
21
10
2022
entrez:
2
12
2021
Statut:
ppublish
Résumé
As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.
Identifiants
pubmed: 34854530
doi: 10.1002/alz.12505
pmc: PMC9160203
mid: NIHMS1762709
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1754-1764Subventions
Organisme : NIA NIH HHS
ID : P50 AG005142
Pays : United States
Organisme : Medical Research Council
ID : MR/009076/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : P50 AG047266
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG025688
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005133
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005138
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047366
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG028383
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG033514
Pays : United States
Organisme : NIA NIH HHS
ID : U19 AG032438
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG013854
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG053760
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066444
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010124
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG023501
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG072946
Pays : United States
Organisme : Medical Research Council
ID : MR/L023784/1
Pays : United Kingdom
Organisme : NIA NIH HHS
ID : P50 AG005131
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010133
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG016574
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005146
Pays : United States
Organisme : NIA NIH HHS
ID : U24 AG072122
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG035982
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG008702
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG053550
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG008051
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005681
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG013846
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047270
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005136
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG049638
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG012300
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG016573
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005134
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG008017
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010161
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066530
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG072976
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010129
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG019610
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG072947
Pays : United States
Informations de copyright
© 2021 the Alzheimer's Association.
Références
Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991;349(6311):704-706.
Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 1995;376(6543):775-778.
Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med. 2010;16(11):1210-1214.
Patterson BW, Elbert DL, Mawuenyega KG, et al. Age and amyloid effects on human CNS amyloid-beta kinetics. Ann Neurol. 2015;78:439-453.
Haass C, Baumeister R. What do we learn from a few familial Alzheimer's disease cases? J Neural Transm. 1998;54(137):145.
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356.
Mills SM, Mallmann J, Santacruz AM, et al. Preclinical trials in autosomal dominant AD: implementations of the DIAN-TU trial. Rev Neurol (Paris). 2013;169:737-743.
Reiman EM, Langbaum JB, Fleisher AS, et al. Alzheimer's prevention initiative: a plan to accelerate the evauation of presymptomatic treatments. J Alzheimer Dis. 2011;26(3):321-329. Suppl.
FaD Administration, Early Alzheimer's Disease: Developing Drugs for Treatment Guidance for Industry. 2018; https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM596728.pdf
Mullard A. FDA approval for Biogen's aducanumab sparks Alzheimer disease firestorm. Nat Rev Drug Discov. 2021;20(7):496.
Cairns NJ, Perrin RJ, Franklin EE, et al. Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer's Network (DIAN). Neuropathology. 2015;35(4):390-400.
Lippa CF, Saunders AM, Smith TW, et al. Familial and sporadic Alzheimer's disease: neuropathology cannot exclude a final common pathway. Neurology. 1996;46(2):406-412.
Bateman RJ, Aisen PS, De Strooper B, et al. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther. 2011;3(1):1.
Joshi A, Ringman JM, Lee AS, Juarez KO, Mendez MF. Comparison of clinical characteristics between familial and non-familial early onset Alzheimer's disease. J Neurol. 2012;259(10):2182-2188.
Storandt M, Balota DA, Aschenbrenner AJ, Morris JC. Clinical and psychological characteristics of the initial cohort of the Dominantly Inherited Alzheimer's Network (DIAN). Neuropsychology. 2014;28(1):19-29.
Fleisher AS, Chen KW, Quiroz YT, et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred a cross-sectional study. Jama Neurology. 2015;72(3):316-324.
Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795-804.
Grønning H, Rahmani A, Gyllenborg J, Dessau RB, Høgh P. Does Alzheimer's disease with early onset progress faster than with late onset? A case-control study of clinical progression and cerebrospinal fluid biomarkers. Dement Geriatr Cogn Disord. 2012;33:111-117.
Bernick C, Cummings J, Raman R, Sun X, Aisen P. Age and rate of cognitive decline in Alzheimer's disease: implications for clinical trials. Arch Neurol. 2012;69(7):901-905.
Panegyres PK, Chen HY. Differences between early and late onset Alzheimer's disease. J Neurodegenerative dis. 2013;2:300-306.
Waring SC, Doody RS, Pavlik MN, Massman PJ, Chan WY. Survival among patients with dementia from a large multi-ethnic population. Alz Dis Assoc Dis. 2005;19(4):178-183.
Jacobs D, Sano M, Marder K, et al. Age at onset of Alzheimer's disease: relation to pattern of cognitive dysfunction and rate of decline. Neurology. 1994;44(7):1215-1220.
Rosselli MC, Ardila AC, Moreno SC, et al. Cognitive decline in patients with familial Alzheimer's disease associated with E280a presenilin-1 mutation: a longitudinal study. J Clin Exp Neuropsychol. 2000;22(4):483-495.
Weiner MW, Aisen PS, Jack CR, et al. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimer's Dement. 2010;6(3):202-211.
Stanley K, Walker Z. Do patients with young onset Alzheimer's disease deteriorate faster than those with late onset Alzheimer's disease? A review of the literature. Int Psychogeriatr. 2014;26:1945-1953.
Canevelli M, Kelaiditi E, Del Campo N, Bruno G, Vellas B, Cesari M. Predicting the rate of cognitive decline in Alzheimer's disease: data from the ICTUS study. Alzheimer's Dis Assoc Disord. 2016;30(3):237-242.
Koss E, Edland S, Fillenbaum G, et al. Clinical and neuropsychological differences between patients with earlier and later onset of Alzheimer's disease: a CERAD analysis. Neurology. 1996;46:136-141. Part XII.
Morris JC, Aisen PS, Bateman RJ, et al. Developing an international network for Alzheimer's research: the dominantly inherited Alzheimer's network. Clin Investig. 2012;2:975-984.
Besser LM, Kukull WA, Teylan MA, et al. The Revised National Alzheimer's coordinating center's neuropathology form-available data and new analyses. J Neuropathol Experimental Neurol. 2018;77(8):717-726.
Morris JC, Weintraub S, Chui HC, et al. The uniform data set (UDS): clinical and cognitive variables and descriptive data from Alzheimer's disease centers. Alzheimer's Dis Assoc Disord. 2006;20(4):210-216.
Ryman DC, Acosta-Baena N, Aisen PS, et al. Symptom onset in autosomal dominant Alzheimer's disease: a systematic review and meta-analysis. Neurology. 2014;83(3):253-260.
Wang G, Coble D, McDade EM, et al. Staging biomarkers in preclinical autosomal dominant Alzheimer's disease by estimated years to symptom onset. Alzheimer's Dement. 2019;15(4):506-514.
Sanchez JS, Hanseeuw BJ, Lopera F, et al. Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer's disease: findings from the Colombia-Boston (COLBOS) biomarker study. Alzheimers Res Ther. 2021;13(1):27.
Smith RX, Strain JF, Tanenbaum A, et al. Resting-State functional connectivity disruption as a pathological biomarker in autosomal dominant Alzheimer 'sdisease. Brain Connect. 2021;11(3):239-249.
Weintraub S, Salmon D, Mercaldo N, et al. The Alzheimer's disease centers' uniform data set (UDS): the neuropsychologic test battery. Alzheimer's Dis Assoc Disord. 2009;23(2):91-101.
Birren JE, Fisher LM. Aging and speed of behavior: possible consequences for psychological functioning. Annu Rev Psychol. 1995;46:329-353.
Cruchaga C, Haller G, Chakraverty S, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer's disease families. PLoS One. 2012;7(2):e31039.
Apostolova LG, Aisen P, Eloyan A, et al. The Longitudinal early-onset Alzheimer's disease study (LEADS): framework and methodology. Alzheimers Dement. 2021.
TNIo Aging, RIaWGoDCftNAoA Disease. Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. Neurobiol Aging. 1997;18(4):S1-S2.
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8(1):1-13.
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38(4):963-974.
Weintraub S, Salmon D, Mercaldo N, et al. The Alzheimer's disease centers' uniform data set (UDS): the neuropsychological test battery. Alz Dis Assoc Disord. 2009;23:91-101.
Monsell SE, Dodge HH, Zhou XH, et al. Results from the NACC uniform data set neuropsychological battery crosswalk study. Alzheimer's Dis Assoc Disord. 2016;30(2):134-139.
Natté R, Maat-Schieman ML, Haan J, Bornebroek M, Roos RA, van Duinen SG. Dementia in hereditary cerebral hemorrhage with amyloidosis-Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol. 2001;50(6):765-772.
Donohue MC, Sperling RA, Salmon DP, et al. The preclinical Alzheimer's cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71(8):961-970.
Doraiswamy PM, Leon J, Cummings JL, Marin D, Neumann PJ. Prevalence and impact of medical comorbidity in Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2002;57(3):M173-177.
Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical Gerontology: A Guide to Assessment and Intervention. New York: The Haworth Press; 1986:165-173.
Littell RC, Milliken GA, Stroup WW, Wolfinger RD. SAS System for Mixed Models. Cary NC: SAS Institute Inc.; 1996.
Cedarbaum JM, Jaros M, Hernandez C, et al. Rationale for use of the clinical dementia rating sum of boxes as a primary outcome measure for Alzheimer's disease clinical trials. Alzheimers Dementia. 2013;9(1):S45-S55.