Time-restricted feeding induces Lactobacillus- and Akkermansia-specific functional changes in the rat fecal microbiota.
Journal
NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944
Informations de publication
Date de publication:
03 12 2021
03 12 2021
Historique:
received:
10
03
2021
accepted:
03
11
2021
entrez:
4
12
2021
pubmed:
5
12
2021
medline:
27
1
2022
Statut:
epublish
Résumé
Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.
Identifiants
pubmed: 34862421
doi: 10.1038/s41522-021-00256-x
pii: 10.1038/s41522-021-00256-x
pmc: PMC8642412
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
85Subventions
Organisme : Università degli Studi di Sassari (University of Sassari)
ID : FAR 2019/2020
Informations de copyright
© 2021. The Author(s).
Références
Weindruch, R. & Sohal, R. S. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N. Engl. J. Med. 337, 986–994 (1997).
pubmed: 9309105
pmcid: 2851235
doi: 10.1056/NEJM199710023371407
Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).
pubmed: 27544442
doi: 10.1016/j.arr.2016.08.005
Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).
pubmed: 30327499
pmcid: 6938162
doi: 10.1038/s41568-018-0061-0
Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).
pubmed: 27810402
doi: 10.1016/j.arr.2016.10.005
de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).
pubmed: 31881139
doi: 10.1056/NEJMra1905136
Chaix, A., Zarrinpar, A., Miu, P. & Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20, 991–1005 (2014).
pubmed: 25470547
pmcid: 4255155
doi: 10.1016/j.cmet.2014.11.001
Tinsley, G. M. et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur. J. Sport Sci. 17, 200–207 (2017).
pubmed: 27550719
doi: 10.1080/17461391.2016.1223173
Moro, T. et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 14, 290 (2016).
pubmed: 27737674
pmcid: 5064803
doi: 10.1186/s12967-016-1044-0
LeCheminant, J. D., Christenson, E., Bailey, B. W. & Tucker, L. A. Restricting night-time eating reduces daily energy intake in healthy young men: a short-term cross-over study. Br. J. Nutr. 110, 2108–2113 (2013).
pubmed: 23702187
doi: 10.1017/S0007114513001359
Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).
pubmed: 27885007
pmcid: 7261592
doi: 10.1126/science.aah4967
Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).
pubmed: 27304506
pmcid: 5388543
doi: 10.1016/j.cmet.2016.06.001
Serra, M., Marongiu, F., Pisu, M. G., Serra, M. & Laconi, E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging 11, 3851–3863 (2019).
pubmed: 31188781
pmcid: 6594823
doi: 10.18632/aging.102021
Ismail, S., Manaf, R. A. & Mahmud, A. Comparison of time-restricted feeding and Islamic fasting: a scoping review. East Mediterr. Health J. 25, 239–245 (2019).
pubmed: 31210344
doi: 10.26719/emhj.19.011
Manoogian, E. N. C. & Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 39, 59–67 (2017).
pubmed: 28017879
doi: 10.1016/j.arr.2016.12.006
Cangemi, A. et al. Dietary restriction: could it be considered as speed bump on tumor progression road? Tumour Biol. 37, 7109–7118 (2016).
pubmed: 27043958
doi: 10.1007/s13277-016-5044-8
Duncan, M. J. et al. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol. Behav. 167, 1–9 (2016).
pubmed: 27586251
doi: 10.1016/j.physbeh.2016.08.027
Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).
pubmed: 22608008
pmcid: 3491655
doi: 10.1016/j.cmet.2012.04.019
Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228.e3 (2019).
pubmed: 30197301
doi: 10.1016/j.cmet.2018.08.011
Illiano, P., Brambilla, R. & Parolini, C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 287, 833–855 (2020).
pubmed: 31955527
doi: 10.1111/febs.15217
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217
doi: 10.1038/nature12820
Ren, J. et al. Alteration in gut microbiota caused by time-restricted feeding alleviate hepatic ischaemia reperfusion injury in mice. J. Cell. Mol. Med. 23, 1714–1722 (2019).
pubmed: 30588757
doi: 10.1111/jcmm.14069
Zeb, F. et al. Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition 78, 1–11 (2020).
doi: 10.1016/j.nut.2020.110797
Hu, D. et al. Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatr. Res. 85, 518–526 (2019).
pubmed: 30188503
doi: 10.1038/s41390-018-0156-z
Hu, D., Ye, Y., Mao, Y., Liao, W. & Xu, W. Time-restricted feeding during childhood has persistent effects on mice commensal microbiota. Ann. Transl. Med. 7, 556–556 (2019).
pubmed: 31807537
pmcid: 6861769
doi: 10.21037/atm.2019.09.64
Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
pubmed: 29173869
doi: 10.1016/j.tim.2017.11.002
Mittelstadt, S. W., Hemenway, C. L. & Spruell, R. D. Effects of fasting on evaluation of gastrointestinal transit with charcoal meal. J. Pharmacol. Toxicol. Methods 52, 154–158 (2005).
pubmed: 15963735
doi: 10.1016/j.vascn.2005.04.017
Turroni, F. et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 71, 183–203 (2014).
pubmed: 23516017
doi: 10.1007/s00018-013-1318-0
Li, D. et al. Microbial biogeography and core microbiota of the rat digestive tract. Sci. Rep. 7, 45840 (2017).
pmcid: 5379200
doi: 10.1038/srep45840
Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E. & Gaskins, H. R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 6, 57–70 (2012).
pubmed: 21753800
doi: 10.1038/ismej.2011.90
Wu, M. et al. The differences between luminal microbiota and mucosal microbiota in mice. J. Microbiol. Biotechnol. 30, 287–295 (2020).
pubmed: 31635444
doi: 10.4014/jmb.1908.08037
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).
pubmed: 15388697
doi: 10.1099/ijs.0.02873-0
van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, 1–8 (2011).
Kostopoulos, I. et al. A continuous battle for host-derived glycans between a mucus specialist and a glycan generalist in vitro and in vivo. Front. Microbiol. 12, 1518 (2021).
doi: 10.3389/fmicb.2021.632454
Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B
pubmed: 28928206
pmcid: 5605934
doi: 10.1128/mBio.00770-17
Yang, M. et al. Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms 8, 1413 (2020).
pmcid: 7564497
doi: 10.3390/microorganisms8091413
de Vos, W. M. Microbe profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology 163, 646–648 (2017).
pubmed: 28530168
doi: 10.1099/mic.0.000444
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Nati. Acad. Sci. USA 110, 9066–9071 (2013).
doi: 10.1073/pnas.1219451110
Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).
pubmed: 33785752
pmcid: 8010079
doi: 10.1038/s41467-021-22097-0
Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).
pubmed: 26563823
pmcid: 4643218
doi: 10.1038/srep16643
Shin, J. et al. Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front. Microbiol. 10, 1137 (2019).
pubmed: 31178843
pmcid: 6538878
doi: 10.3389/fmicb.2019.01137
Oberto, J., Nabti, S., Jooste, V., Mignot, H. & Rouviere-Yaniv, J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4, 1–20 (2009).
doi: 10.1371/journal.pone.0004367
Kamashev, D. et al. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment. PLoS ONE 12, 1–24 (2017).
doi: 10.1371/journal.pone.0188037
Kar, S. & Adhya, S. Recruitment of HU by piggyback: a special role of GalR in repressosome assembly. Genes Dev. 15, 2273–2281 (2001).
pubmed: 11544184
pmcid: 312769
doi: 10.1101/gad.920301
Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).
pubmed: 34261503
pmcid: 8278651
doi: 10.1186/s13059-021-02427-7
Kleiner, M. et al. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 8, 1558 (2017).
pubmed: 29146960
pmcid: 5691128
doi: 10.1038/s41467-017-01544-x
Jizhong, Z. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2021).
Tanca, A. et al. Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front. Microbiol. 8, 391 (2017).
pubmed: 28352255
pmcid: 5348496
doi: 10.3389/fmicb.2017.00391
Badet, C. & Thebaud, N. B. Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol. J. 2, 38–48 (2008).
pubmed: 19088910
pmcid: 2593047
doi: 10.2174/1874285800802010038
Nishiyama, K., Sugiyama, M. & Mukai, T. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4, 34 (2016).
pmcid: 5039594
doi: 10.3390/microorganisms4030034
Wu, M. et al. The dynamic changes of gut microbiota in Muc2 deficient mice. Int. J. Mol. Sci. 19, 2809 (2018).
pmcid: 6164417
doi: 10.3390/ijms19092809
Zúñiga, M., Monedero, V. & Yebra, M. J. Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol. 9, 1917 (2018).
pubmed: 30177920
pmcid: 6109692
doi: 10.3389/fmicb.2018.01917
Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).
pubmed: 26100928
doi: 10.1136/gutjnl-2014-308778
Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).
pubmed: 27863247
pmcid: 5131798
doi: 10.1016/j.cell.2016.10.043
Bell, A. & Juge, N. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 31, 691–696 (2020).
pmcid: 8252862
doi: 10.1093/glycob/cwaa097
Sekar, K. et al. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol. Syst. Biol. 14, e8623 (2018).
pubmed: 30397005
pmcid: 6217170
doi: 10.15252/msb.20188623
Rhimi, M. et al. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice. Microb. Cell Fact. 14, 1–8 (2015).
doi: 10.1186/s12934-015-0391-5
Cox, L. M. et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 9, 1–14 (2019).
doi: 10.1038/s41598-019-54187-x
Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5, 511–524 (2020).
pubmed: 31988379
pmcid: 7048616
doi: 10.1038/s41564-019-0649-5
Wang, H., Xia, P., Lu, Z., Su, Y. & Zhu, W. Metabolome-microbiome responses of growing pigs induced by time-restricted feeding. Front. Vet. Sci. 8, 681202 (2021).
pubmed: 34239912
pmcid: 8258120
doi: 10.3389/fvets.2021.681202
Sarmiento, M. R. A. et al. Obesity, xenobiotic intake and antimicrobial-resistance genes in the human gastrointestinal tract: a comparative study of eutrophic, overweight and obese individuals. Genes (Basel) 10, 349 (2019).
doi: 10.3390/genes10050349
Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).
pubmed: 26229982
pmcid: 4517851
doi: 10.1126/sciadv.1500183
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
pubmed: 29773078
pmcid: 5956843
doi: 10.1186/s40168-018-0470-z
Qiong, W., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
doi: 10.1128/AEM.00062-07
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Tanca, A. et al. A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 2, 49 (2014).
pubmed: 25516796
pmcid: 4266899
doi: 10.1186/s40168-014-0049-2
Wiśniewski, J. R. et al. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485
doi: 10.1038/nmeth.1322
Wiśniewski, J. R. Filter-aided sample preparation for proteome analysis. Methods Mol. Biol. 1841, 3–10 (2018).
pubmed: 30259475
doi: 10.1007/978-1-4939-8695-8_1
Tanca, A., Biosa, G., Pagnozzi, D., Addis, M. F. & Uzzau, S. Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome. Proteomics 13, 2597–2607 (2013).
pubmed: 23784971
doi: 10.1002/pmic.201200478
Palomba, A. et al. Comparative evaluation of MaxQuant and proteome discoverer MS1-based protein quantification tools. J. Proteome Res. 20, 3497–3507 (2021).
pubmed: 34038140
pmcid: 8280745
doi: 10.1021/acs.jproteome.1c00143
Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. Gigascience 7, giy055 (2018).
pmcid: 5967468
doi: 10.1093/gigascience/giy055
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007
doi: 10.1038/nmeth.3176
Huson, D. H. et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
pubmed: 27327495
pmcid: 4915700
doi: 10.1371/journal.pcbi.1004957
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281 (2021).
pubmed: 33167031
doi: 10.1093/nar/gkaa1018
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
pubmed: 33125081
doi: 10.1093/nar/gkaa970
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
pubmed: 24270786
doi: 10.1093/nar/gkt1178
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
pubmed: 28460117
pmcid: 5850834
doi: 10.1093/molbev/msx148
Jagtap, P. D. et al. Metaproteomic analysis using the Galaxy framework. Proteomics 15, 3553–3565 (2015).
pubmed: 26058579
doi: 10.1002/pmic.201500074
Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).
pubmed: 28449106
pmcid: 5570177
doi: 10.1093/nar/gkx295
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).
pubmed: 23975260
doi: 10.1038/nprot.2013.099
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
doi: 10.1038/nmeth.3901
pubmed: 27348712
Iskandar, C. F., Cailliez-Grimal, C., Borges, F. & Revol-Junelles, A.-M. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci. Technol. 88, 121–132 (2019).
doi: 10.1016/j.tifs.2019.03.020
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
pubmed: 31686107