Time-restricted feeding induces Lactobacillus- and Akkermansia-specific functional changes in the rat fecal microbiota.


Journal

NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944

Informations de publication

Date de publication:
03 12 2021
Historique:
received: 10 03 2021
accepted: 03 11 2021
entrez: 4 12 2021
pubmed: 5 12 2021
medline: 27 1 2022
Statut: epublish

Résumé

Diet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.

Identifiants

pubmed: 34862421
doi: 10.1038/s41522-021-00256-x
pii: 10.1038/s41522-021-00256-x
pmc: PMC8642412
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

85

Subventions

Organisme : Università degli Studi di Sassari (University of Sassari)
ID : FAR 2019/2020

Informations de copyright

© 2021. The Author(s).

Références

Weindruch, R. & Sohal, R. S. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N. Engl. J. Med. 337, 986–994 (1997).
pubmed: 9309105 pmcid: 2851235 doi: 10.1056/NEJM199710023371407
Most, J., Tosti, V., Redman, L. M. & Fontana, L. Calorie restriction in humans: an update. Ageing Res. Rev. 39, 36–45 (2017).
pubmed: 27544442 doi: 10.1016/j.arr.2016.08.005
Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).
pubmed: 30327499 pmcid: 6938162 doi: 10.1038/s41568-018-0061-0
Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).
pubmed: 27810402 doi: 10.1016/j.arr.2016.10.005
de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).
pubmed: 31881139 doi: 10.1056/NEJMra1905136
Chaix, A., Zarrinpar, A., Miu, P. & Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20, 991–1005 (2014).
pubmed: 25470547 pmcid: 4255155 doi: 10.1016/j.cmet.2014.11.001
Tinsley, G. M. et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur. J. Sport Sci. 17, 200–207 (2017).
pubmed: 27550719 doi: 10.1080/17461391.2016.1223173
Moro, T. et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 14, 290 (2016).
pubmed: 27737674 pmcid: 5064803 doi: 10.1186/s12967-016-1044-0
LeCheminant, J. D., Christenson, E., Bailey, B. W. & Tucker, L. A. Restricting night-time eating reduces daily energy intake in healthy young men: a short-term cross-over study. Br. J. Nutr. 110, 2108–2113 (2013).
pubmed: 23702187 doi: 10.1017/S0007114513001359
Panda, S. Circadian physiology of metabolism. Science 354, 1008–1015 (2016).
pubmed: 27885007 pmcid: 7261592 doi: 10.1126/science.aah4967
Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).
pubmed: 27304506 pmcid: 5388543 doi: 10.1016/j.cmet.2016.06.001
Serra, M., Marongiu, F., Pisu, M. G., Serra, M. & Laconi, E. Time-restricted feeding delays the emergence of the age-associated, neoplastic-prone tissue landscape. Aging 11, 3851–3863 (2019).
pubmed: 31188781 pmcid: 6594823 doi: 10.18632/aging.102021
Ismail, S., Manaf, R. A. & Mahmud, A. Comparison of time-restricted feeding and Islamic fasting: a scoping review. East Mediterr. Health J. 25, 239–245 (2019).
pubmed: 31210344 doi: 10.26719/emhj.19.011
Manoogian, E. N. C. & Panda, S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res. Rev. 39, 59–67 (2017).
pubmed: 28017879 doi: 10.1016/j.arr.2016.12.006
Cangemi, A. et al. Dietary restriction: could it be considered as speed bump on tumor progression road? Tumour Biol. 37, 7109–7118 (2016).
pubmed: 27043958 doi: 10.1007/s13277-016-5044-8
Duncan, M. J. et al. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol. Behav. 167, 1–9 (2016).
pubmed: 27586251 doi: 10.1016/j.physbeh.2016.08.027
Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).
pubmed: 22608008 pmcid: 3491655 doi: 10.1016/j.cmet.2012.04.019
Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228.e3 (2019).
pubmed: 30197301 doi: 10.1016/j.cmet.2018.08.011
Illiano, P., Brambilla, R. & Parolini, C. The mutual interplay of gut microbiota, diet and human disease. FEBS J. 287, 833–855 (2020).
pubmed: 31955527 doi: 10.1111/febs.15217
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217 doi: 10.1038/nature12820
Ren, J. et al. Alteration in gut microbiota caused by time-restricted feeding alleviate hepatic ischaemia reperfusion injury in mice. J. Cell. Mol. Med. 23, 1714–1722 (2019).
pubmed: 30588757 doi: 10.1111/jcmm.14069
Zeb, F. et al. Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition 78, 1–11 (2020).
doi: 10.1016/j.nut.2020.110797
Hu, D. et al. Time-restricted feeding causes irreversible metabolic disorders and gut microbiota shift in pediatric mice. Pediatr. Res. 85, 518–526 (2019).
pubmed: 30188503 doi: 10.1038/s41390-018-0156-z
Hu, D., Ye, Y., Mao, Y., Liao, W. & Xu, W. Time-restricted feeding during childhood has persistent effects on mice commensal microbiota. Ann. Transl. Med. 7, 556–556 (2019).
pubmed: 31807537 pmcid: 6861769 doi: 10.21037/atm.2019.09.64
Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
pubmed: 29173869 doi: 10.1016/j.tim.2017.11.002
Mittelstadt, S. W., Hemenway, C. L. & Spruell, R. D. Effects of fasting on evaluation of gastrointestinal transit with charcoal meal. J. Pharmacol. Toxicol. Methods 52, 154–158 (2005).
pubmed: 15963735 doi: 10.1016/j.vascn.2005.04.017
Turroni, F. et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 71, 183–203 (2014).
pubmed: 23516017 doi: 10.1007/s00018-013-1318-0
Li, D. et al. Microbial biogeography and core microbiota of the rat digestive tract. Sci. Rep. 7, 45840 (2017).
pmcid: 5379200 doi: 10.1038/srep45840
Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E. & Gaskins, H. R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 6, 57–70 (2012).
pubmed: 21753800 doi: 10.1038/ismej.2011.90
Wu, M. et al. The differences between luminal microbiota and mucosal microbiota in mice. J. Microbiol. Biotechnol. 30, 287–295 (2020).
pubmed: 31635444 doi: 10.4014/jmb.1908.08037
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).
pubmed: 15388697 doi: 10.1099/ijs.0.02873-0
van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, 1–8 (2011).
Kostopoulos, I. et al. A continuous battle for host-derived glycans between a mucus specialist and a glycan generalist in vitro and in vivo. Front. Microbiol. 12, 1518 (2021).
doi: 10.3389/fmicb.2021.632454
Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B
pubmed: 28928206 pmcid: 5605934 doi: 10.1128/mBio.00770-17
Yang, M. et al. Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms 8, 1413 (2020).
pmcid: 7564497 doi: 10.3390/microorganisms8091413
de Vos, W. M. Microbe profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology 163, 646–648 (2017).
pubmed: 28530168 doi: 10.1099/mic.0.000444
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Nati. Acad. Sci. USA 110, 9066–9071 (2013).
doi: 10.1073/pnas.1219451110
Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).
pubmed: 33785752 pmcid: 8010079 doi: 10.1038/s41467-021-22097-0
Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).
pubmed: 26563823 pmcid: 4643218 doi: 10.1038/srep16643
Shin, J. et al. Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front. Microbiol. 10, 1137 (2019).
pubmed: 31178843 pmcid: 6538878 doi: 10.3389/fmicb.2019.01137
Oberto, J., Nabti, S., Jooste, V., Mignot, H. & Rouviere-Yaniv, J. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS ONE 4, 1–20 (2009).
doi: 10.1371/journal.pone.0004367
Kamashev, D. et al. Comparison of histone-like HU protein DNA-binding properties and HU/IHF protein sequence alignment. PLoS ONE 12, 1–24 (2017).
doi: 10.1371/journal.pone.0188037
Kar, S. & Adhya, S. Recruitment of HU by piggyback: a special role of GalR in repressosome assembly. Genes Dev. 15, 2273–2281 (2001).
pubmed: 11544184 pmcid: 312769 doi: 10.1101/gad.920301
Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).
pubmed: 34261503 pmcid: 8278651 doi: 10.1186/s13059-021-02427-7
Kleiner, M. et al. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 8, 1558 (2017).
pubmed: 29146960 pmcid: 5691128 doi: 10.1038/s41467-017-01544-x
Jizhong, Z. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2021).
Tanca, A. et al. Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front. Microbiol. 8, 391 (2017).
pubmed: 28352255 pmcid: 5348496 doi: 10.3389/fmicb.2017.00391
Badet, C. & Thebaud, N. B. Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol. J. 2, 38–48 (2008).
pubmed: 19088910 pmcid: 2593047 doi: 10.2174/1874285800802010038
Nishiyama, K., Sugiyama, M. & Mukai, T. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4, 34 (2016).
pmcid: 5039594 doi: 10.3390/microorganisms4030034
Wu, M. et al. The dynamic changes of gut microbiota in Muc2 deficient mice. Int. J. Mol. Sci. 19, 2809 (2018).
pmcid: 6164417 doi: 10.3390/ijms19092809
Zúñiga, M., Monedero, V. & Yebra, M. J. Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Front. Microbiol. 9, 1917 (2018).
pubmed: 30177920 pmcid: 6109692 doi: 10.3389/fmicb.2018.01917
Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).
pubmed: 26100928 doi: 10.1136/gutjnl-2014-308778
Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21 (2016).
pubmed: 27863247 pmcid: 5131798 doi: 10.1016/j.cell.2016.10.043
Bell, A. & Juge, N. Mucosal glycan degradation of the host by the gut microbiota. Glycobiology 31, 691–696 (2020).
pmcid: 8252862 doi: 10.1093/glycob/cwaa097
Sekar, K. et al. Synthesis and degradation of FtsZ quantitatively predict the first cell division in starved bacteria. Mol. Syst. Biol. 14, e8623 (2018).
pubmed: 30397005 pmcid: 6217170 doi: 10.15252/msb.20188623
Rhimi, M. et al. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice. Microb. Cell Fact. 14, 1–8 (2015).
doi: 10.1186/s12934-015-0391-5
Cox, L. M. et al. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 9, 1–14 (2019).
doi: 10.1038/s41598-019-54187-x
Zagato, E. et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5, 511–524 (2020).
pubmed: 31988379 pmcid: 7048616 doi: 10.1038/s41564-019-0649-5
Wang, H., Xia, P., Lu, Z., Su, Y. & Zhu, W. Metabolome-microbiome responses of growing pigs induced by time-restricted feeding. Front. Vet. Sci. 8, 681202 (2021).
pubmed: 34239912 pmcid: 8258120 doi: 10.3389/fvets.2021.681202
Sarmiento, M. R. A. et al. Obesity, xenobiotic intake and antimicrobial-resistance genes in the human gastrointestinal tract: a comparative study of eutrophic, overweight and obese individuals. Genes (Basel) 10, 349 (2019).
doi: 10.3390/genes10050349
Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).
pubmed: 26229982 pmcid: 4517851 doi: 10.1126/sciadv.1500183
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
pubmed: 31341288 pmcid: 7015180 doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
pubmed: 29773078 pmcid: 5956843 doi: 10.1186/s40168-018-0470-z
Qiong, W., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
doi: 10.1128/AEM.00062-07
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Tanca, A. et al. A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 2, 49 (2014).
pubmed: 25516796 pmcid: 4266899 doi: 10.1186/s40168-014-0049-2
Wiśniewski, J. R. et al. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
pubmed: 19377485 doi: 10.1038/nmeth.1322
Wiśniewski, J. R. Filter-aided sample preparation for proteome analysis. Methods Mol. Biol. 1841, 3–10 (2018).
pubmed: 30259475 doi: 10.1007/978-1-4939-8695-8_1
Tanca, A., Biosa, G., Pagnozzi, D., Addis, M. F. & Uzzau, S. Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome. Proteomics 13, 2597–2607 (2013).
pubmed: 23784971 doi: 10.1002/pmic.201200478
Palomba, A. et al. Comparative evaluation of MaxQuant and proteome discoverer MS1-based protein quantification tools. J. Proteome Res. 20, 3497–3507 (2021).
pubmed: 34038140 pmcid: 8280745 doi: 10.1021/acs.jproteome.1c00143
Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. Gigascience 7, giy055 (2018).
pmcid: 5967468 doi: 10.1093/gigascience/giy055
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
pubmed: 25402007 doi: 10.1038/nmeth.3176
Huson, D. H. et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
pubmed: 27327495 pmcid: 4915700 doi: 10.1371/journal.pcbi.1004957
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 49, D274–D281 (2021).
pubmed: 33167031 doi: 10.1093/nar/gkaa1018
Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).
pubmed: 33125081 doi: 10.1093/nar/gkaa970
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
pubmed: 24270786 doi: 10.1093/nar/gkt1178
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
pubmed: 28460117 pmcid: 5850834 doi: 10.1093/molbev/msx148
Jagtap, P. D. et al. Metaproteomic analysis using the Galaxy framework. Proteomics 15, 3553–3565 (2015).
pubmed: 26058579 doi: 10.1002/pmic.201500074
Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).
pubmed: 28449106 pmcid: 5570177 doi: 10.1093/nar/gkx295
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013).
pubmed: 23975260 doi: 10.1038/nprot.2013.099
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
doi: 10.1038/nmeth.3901 pubmed: 27348712
Iskandar, C. F., Cailliez-Grimal, C., Borges, F. & Revol-Junelles, A.-M. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci. Technol. 88, 121–132 (2019).
doi: 10.1016/j.tifs.2019.03.020
Deutsch, E. W. et al. The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Res. 48, D1145–D1152 (2020).
pubmed: 31686107

Auteurs

Antonio Palomba (A)

Porto Conte Ricerche Srl, Science and Technology Park of Sardinia, Alghero, Italy.

Alessandro Tanca (A)

Porto Conte Ricerche Srl, Science and Technology Park of Sardinia, Alghero, Italy.
Department of Biomedical Sciences, University of Sassari, Sassari, Italy.

Marcello Abbondio (M)

Department of Biomedical Sciences, University of Sassari, Sassari, Italy.

Rosangela Sau (R)

Department of Biomedical Sciences, University of Sassari, Sassari, Italy.

Monica Serra (M)

Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.

Fabio Marongiu (F)

Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.

Cristina Fraumene (C)

Porto Conte Ricerche Srl, Science and Technology Park of Sardinia, Alghero, Italy.

Daniela Pagnozzi (D)

Porto Conte Ricerche Srl, Science and Technology Park of Sardinia, Alghero, Italy.

Ezio Laconi (E)

Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.

Sergio Uzzau (S)

Porto Conte Ricerche Srl, Science and Technology Park of Sardinia, Alghero, Italy. uzzau@uniss.it.
Department of Biomedical Sciences, University of Sassari, Sassari, Italy. uzzau@uniss.it.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH