Maternal inheritance of the koala gut microbiome and its compositional and functional maturation during juvenile development.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
revised:
02
11
2021
received:
02
09
2021
accepted:
20
11
2021
pubmed:
5
12
2021
medline:
18
3
2022
entrez:
4
12
2021
Statut:
ppublish
Résumé
The acquisition and maturation of the gastrointestinal microbiome is a crucial aspect of mammalian development, particularly for specialist herbivores such as the koala (Phascolarctos cinereus). Joey koalas are thought to be inoculated with microorganisms by feeding on specialized maternal faeces (pap). We found that compared to faeces, pap has higher microbial density, higher microbial evenness and a higher proportion of rare taxa, which may facilitate the establishment of those taxa in joey koalas. We show that the microbiomes of captive joey koalas were on average more similar to those of their mothers than to other koalas, indicating strong maternal inheritance of the faecal microbiome, which can lead to intergenerational gut dysbiosis when the mother is ill. Directly after pap feeding, the joey koalas' microbiomes were enriched for milk-associated bacteria including Bacteroides fragilis, suggesting a conserved role for this species across mammalian taxa. The joeys' microbiomes then changed slowly over 5 months to resemble those of adults by 1 year of age. The relative abundance of fibrolytic bacteria and genes involved in the degradation of plant cell walls also increased in the infants over this time, likely in response to an increased proportion of Eucalyptus leaves in their diets.
Identifiants
pubmed: 34863030
doi: 10.1111/1462-2920.15858
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
475-493Informations de copyright
© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Alfano, N., Courtiol, A., Vielgrader, H., Timms, P., Roca, A.L., and Greenwood, A.D. (2015) Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci Rep 5: 10189.
An, D., Oh, S.F., Olszak, T., Neves, J.F., Avci, F.Y., Erturk-Hasdemir, D., et al. (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156: 123-133.
Barker, C.J., Gillett, A., Polkinghorne, A., and Timms, P. (2013) Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Vet Microbiol 167: 554-564.
Barron Pastor, H.J., and Gordon, D.M. (2016) Effects of dispersal limitation in the face of intense selection via dietary intervention on the faecal microbiota of rats. Environ Microbiol Rep 8: 187-195.
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67: 1-48.
Biddle, A., Stewart, L., Blanchard, J., and Leschine, S. (2013) Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5: 627-640.
Björnhag, G. (1981) The retrograde transport of fluid in the proximal colon of rabbits. Swedish J Agric Res 11: 63-69.
Blyton, M.D.J., Soo, R.M., Whisson, D., Marsh, K.J., Pascoe, J., Le Pla, M., et al. (2019) Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim Microbiome 1: 6.
Blyton, M.D.J., Soo, R.M., Hugenholtz, P., and Moore, B.D. (2022) Characterization of the juvenile koala gut microbiome across wild populations. Environ Microbiol. https://doi.org/10.1111/1462-2920.15884
Boer, M. (1998) Observations on reproduction in the common wombat Vombatus ursinus in captivity. In Wombats, Wells, R., and Pridmore, P. (eds). Sydney: Surrey Beatty, pp. 129-146.
Boyd, J.A., Woodcroft, B.J., and Tyson, G.W. (2018) GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res 46: e59-e59.
Brice, K. (2017) Bugs in “Bears” Are Mismatches between Diets and Gut Microbial Communities a Bugbear for Koalas (Phascolarctos cinereus)?. Sydney: Western Sydney University.
Brice, K.L., Trivedi, P., Jeffries, T.C., Blyton, M.D.J., Mitchell, C., Singh, B.K., and Moore, B.D. (2019) The koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ 7: e6534.
Chhour, K.-L., Hinds, L.A., Jacques, N.A., and Deane, E.M. (2010) An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young. Microbiology 156: 798-808.
Cork, S.J., and Hume, I. (1983) Microbial digestion in the koala (Phascolarctos cinereus, Marsupialia), an arboreal folivore. J Comp Physiol B Biochem Syst Environ Physiol 152: 131-135.
Cork, S.J., Hume, I., and Dawson, T. (1983) Digestion and metabolism of a natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol 153: 181-190.
Cork, S.J., and Warner, A. (1983) The passage of digesta markers through the gut of a folivorous marsupial, the koala Phascolarctos cinereus. J Comp Physiol 152: 43-51.
Croft, D.B. (1981) Behaviour of red kangaroos, Macropus rufus, in northwestern NSW. Aust Mammal 4: 5-58.
Daft, J.G., Ptacek, T., Kumar, R., Morrow, C., and Lorenz, R.G. (2015) Cross-fostering immediately after birth induces a permanent microbiota shift that is shaped by the nursing mother. Microbiome 3: 17.
Davenport, E.R. (2016) Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes 7: 178-184.
Davenport, E.R., Cusanovich, D.A., Michelini, K., Barreiro, L.B., Ober, C., and Gilad, Y. (2015) Genome-wide association studies of the human gut microbiota. PLoS One 10: 10.
Doi, R.H., and Kosugi., A. (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2: 541-551.
Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., and Knight, R. (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107: 11971-11975.
Foley, W., Hume, I., and Cork, S. (1989) Fermentation in the hindgut of the greater glider (Petauroides volans) and the Brushtail possum (Trichosurus vulpecula): two arboreal folivores. Physiol Zool 62: 1126-1143.
Geerlings, S.Y., Kostopoulos, I., De Vos, W.M., and Belzer, C. (2018) Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms 6: 75.
Goodrich, J.K., Waters, J.L., Poole, A.C., Sutter, J.L., Koren, O., Blekhman, R., et al. (2014) Human genetics shape the gut microbiome. Cell 159: 789-799.
Graham, E.D., Heidelberg, J.F., and Tully, B. (2017) BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. Peer J 5: e3035.
Hanning, I., and Diaz-Sanchez, S. (2015) The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3: 51.
Hirsch, B.E., Saraiya, N., Poeth, K., Schwartz, R.M., Epstein, M.E., and Honig, G. (2015) Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect Dis 15: 191.
Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012) Interactions between the microbiota and the immune system. Science 336: 1268-1273.
Hume, I.D. (1982) Digestive physiology and nutrition of marsupials. Comp Biochem Physiol Part A Physiol 71: 1-10.
Hume, I.D. (2002) Digestive strategies of mammals. Acta Zool Sin 48: 1-19.
Imelfort, M., Parks, D., Woodcroft, B.J., Dennis, P., Hugenholtz, P., and Tyson, G.W. (2014) GroopM: an automated tool for the recovery of population genomes from related metagenomes. Peer J 2: e603.
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44: D457-D462.
Kang, D., Li, F., Kirton, E.S., Thomas, A., Egan, R.S., An, H., and Wang, Z. (2019) MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peer J 7: e7359.
Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. Peer J 3: e1165.
Kostopoulos, I., Elzinga, J., Ottman, N., Klievink, J.T., Blijenberg, B., Aalvink, S., et al. (2020) Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep 10: 1-17.
Krause, W., Cutts, J., and Leeson, C. (1976) The postnatal development of the alimentary canal in the opossum. II. Stomach. J Anat 122: 499.
Krockenberger, A.K., Hume, I.D., and Cork, S.J. (1998) Production of milk and nutrition of the dependent young of free-ranging koalas (Phascolarctos cinereus). Physiol Zool 71: 45-56.
Lentle, R., Dey, D., Hulls, C., Mellor, D., Moughan, P., Stafford, K., and Nicholas, K. (2006) A quantitative study of the morphological development and bacterial colonisation of the gut of the tammar wallaby Macropus eugenii eugenii and brushtail possum Trichosurus vulpecula during in-pouch development. J Comp Physiol B 176: 763.
Love, M.I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550.
Mach, N., Berri, M., Estellé, J., Levenez, F., Lemonnier, G., Denis, C., et al. (2015) Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 7: 554-569.
Malloy, M.H., Morriss, F., Denson, S., Weisbrodt, N., Lichtenberger, L., and Adcock, E. (1979) Neonatal gastric motility in dogs: maturation and response to pentagastrin. Am J Physiol 236: G562-G566.
Marcobal, A., Barboza, M., Sonnenburg, E.D., Pudlo, N., Martens, E.C., Desai, P., et al. (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10: 507-514.
McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., et al. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6: 610-618.
Miclat, N.N., Hodgkinson, R., and Marx, G.F. (1978) Neonatal gastric pH. Anesth Analg 57: 98-101.
Miller, A.W., Kohl, K.D., and Dearing, D.M. (2014) The gastrointestinal tract of the white-throated woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 80: 1595-1601.
Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27: 824-834.
Obadia, B., Güvener, Z.T., Zhang, V., Ceja-Navarro, J.A., Brodie, E.L., William, W.J., and Ludington, W.B. (2017) Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 27: e1998.
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017) dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11: 2864-2868.
Ormerod, K.L., Wood, D.L., Lachner, N., Gellatly, S.L., Daly, J.N., Parsons, J.D., et al. (2016) Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4: 36.
Osawa, R., Blanshard, W., and Ocallaghan, P. (1993) Microbiological studies of the intestinal microflora of the koala, Phascolarctos-cinereus. 2. Pap, a special maternal feces consumed by juvenile koalas. Aust J Zool 41: 611-620.
Osawa, R., Rainey, F., Fujisawa, T., Lang, E., Busse, H., Walsh, T., and Stackebrandt, E. (1995) Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. Syst Appl Microbiol 18: 368-373.
Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., and Brown, P.O. (2007) Development of the human infant intestinal microbiota. PLoS Biol 5: e177.
Park, J., and Yi, D.Y. (2021) Comprehensive analysis of the effect of probiotic intake by the mother on human breast milk and infant fecal microbiota. J Korean Med Sci 36: e58.
Parker, D. (1976) The measurement of production rates of volatile fatty acids in the caecum of the conscious rabbit. Br J Nutr 36: 61-70.
Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., and Hugenholtz, P. (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36: 996-1004.
Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 1043-1055.
Pratchett, D., Jones, R., and Syrch, F. (1991) Use of DHP-degrading rumen bacteria to overcome toxicity in cattle grazing irrigated leucaena pasture. Trop Grasslands 25: 268-274.
Price, M.N., Dehal, P.S., and Arkin, A.P. (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5: e9490.
Shiffman, M.E., Soo, R.M., Dennis, P.G., Morrison, M., Tyson, G.W., and Hugenholtz, P. (2017) Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion. PeerJ 5: e4075.
Smith, M. (1979) Notes on reproduction and growth in the koala, Phascolarctos cinereus (Goldfuss). Aust Wildl Res 6: 5-12.
Sondheimer, J.M., Clark, D.A., and Gervaise, E.P. (1985) Continuous gastric pH measurement in young and older healthy preterm infants receiving formula and clear liquid feedings. J Pediatr Gastroenterol Nutr 4: 352-355.
Stevens, C. (1995) Comparative Physiology of the Vertebrate Digestive System. Cambridge: Cambridge University Press.
Stevens, C.E., and Hume, I.D. (2004) Comparative Physiology of the Vertebrate Digestive System. Cambridge: Cambridge University Press.
Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., and Wu, C.H. (2014) UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31: 926-932.
Treichel, N.S., Prevoršek, Z., Mrak, V., Kostrić, M., Vestergaard, G., Foesel, B., et al. (2019) Effect of the nursing mother on the gut microbiome of the offspring during early mouse development. Microb Ecol 78: 517-527.
Urashima, T., and Messer, M. (2017) Evolution of milk oligosaccharides and their function in monotremes and marsupial. In: Pontarotti, P. (Ed.) Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts: Cham: Springer, pp. 237-256. https://doi.org/10.1007/978-3-319-61569-1_13
Vavrek, M.J. (2011) Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron 14: 16.
Wu, Y.-W., Simmons, B.A., and Singer, S.W. (2015) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32: 605-607.
Yadav, M., Stanley, N., and Waring, H. (1972) The microbial flora of the gut of the pouch-young and the pouch of a marsupial, Setonix brachyurus. J Gen Microbiol 70: 437-442.
Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40: W445-W451.