Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification.

Computer Applications-General Computer-aided Diagnosis Informatics

Journal

Radiology. Artificial intelligence
ISSN: 2638-6100
Titre abrégé: Radiol Artif Intell
Pays: United States
ID NLM: 101746556

Informations de publication

Date de publication:
Nov 2021
Historique:
received: 09 04 2021
revised: 20 09 2021
accepted: 12 10 2021
entrez: 6 12 2021
pubmed: 7 12 2021
medline: 7 12 2021
Statut: epublish

Résumé

The clinical deployment of artificial intelligence (AI) applications in medical imaging is perhaps the greatest challenge facing radiology in the next decade. One of the main obstacles to the incorporation of automated AI-based decision-making tools in medicine is the failure of models to generalize when deployed across institutions with heterogeneous populations and imaging protocols. The most well-understood pitfall in developing these AI models is overfitting, which has, in part, been overcome by optimizing training protocols. However, overfitting is not the only obstacle to the success and generalizability of AI. Underspecification is also a serious impediment that requires conceptual understanding and correction. It is well known that a single AI pipeline, with prescribed training and testing sets, can produce several models with various levels of generalizability. Underspecification defines the inability of the pipeline to identify whether these models have embedded the structure of the underlying system by using a test set independent of, but distributed identically, to the training set. An underspecified pipeline is unable to assess the degree to which the models will be generalizable. Stress testing is a known tool in AI that can limit underspecification and, importantly, assure broad generalizability of AI models. However, the application of stress tests is new in radiologic applications. This report describes the concept of underspecification from a radiologist perspective, discusses stress testing as a specific strategy to overcome underspecification, and explains how stress tests could be designed in radiology-by modifying medical images or stratifying testing datasets. In the upcoming years, stress tests should become in radiology the standard that crash tests have become in the automotive industry.

Identifiants

pubmed: 34870222
doi: 10.1148/ryai.2021210097
pmc: PMC8637230
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e210097

Informations de copyright

2021 by the Radiological Society of North America, Inc.

Déclaration de conflit d'intérêts

Disclosures of conflicts of interest: T.E. No relevant relationships. L.H.S. Consultant for Merck and Regeneron (member, DSMB and endpoint analysis committees). F.Z.M. No relevant relationships. L.D. No relevant relationships.

Références

Radiology. 2020 Oct;297(1):6-14
pubmed: 32840473
Radiology. 2020 Mar;294(3):568-579
pubmed: 31934830
Radiology. 2020 May;295(2):E1
pubmed: 32208102
Radiology. 2020 Oct;297(1):178-188
pubmed: 32749203
Radiology. 2020 Apr;295(1):80-81
pubmed: 32053061
Radiology. 2020 May;295(2):351-352
pubmed: 32101094
Radiology. 2020 Jun;295(3):638-639
pubmed: 32267215
Radiology. 2020 Apr;295(1):66-79
pubmed: 32043947
Radiology. 2020 Jun;295(3):E9
pubmed: 32286196
Radiology. 2020 Jul;296(1):152-158
pubmed: 32315267
Radiology. 2020 Feb;294(2):453-454
pubmed: 31825291
Radiology. 2020 Feb;294(2):273-274
pubmed: 31846401
Radiology. 2020 Dec;297(3):687-696
pubmed: 32960729
Radiology. 2020 Feb;294(2):432-433
pubmed: 31800365
Radiology. 2020 Sep;296(3):652-661
pubmed: 32692300
Radiology. 2020 May;295(2):407-415
pubmed: 32181729
Radiology. 2020 Apr;295(1):4-15
pubmed: 32068507
Radiology. 2020 Oct;297(1):15-16
pubmed: 32845217
Radiology. 2020 Jul;296(1):56-64
pubmed: 32315264
Radiology. 2020 Apr;295(1):136-145
pubmed: 32013791
Radiology. 2020 Jan;294(1):210-211
pubmed: 31714868
Radiology. 2020 Feb;294(2):445-452
pubmed: 31821122
Radiology. 2020 Feb;294(2):265-272
pubmed: 31845842
Radiology. 2020 Jan;294(1):29-30
pubmed: 31747344
Radiology. 2020 May;295(2):416-417
pubmed: 32186458
Radiology. 2020 Sep;296(3):E192
pubmed: 32243239
Radiology. 2020 Nov;297(2):451-458
pubmed: 32840472
Radiology. 2020 Jan;294(1):199-209
pubmed: 31714194
Radiology. 2020 Aug;296(2):E65-E71
pubmed: 32191588
Radiology. 2020 Nov;297(2):459-461
pubmed: 32845216
Radiology. 2020 Feb;294(2):398-404
pubmed: 31845845
Radiology. 2020 Feb;294(2):434-444
pubmed: 31793851
Eur Urol. 2015 Jun;67(6):1142-1151
pubmed: 25572824
Radiology. 2020 Sep;296(3):E166-E172
pubmed: 32384019
Radiology. 2020 Dec;297(3):513-520
pubmed: 33021895
Radiology. 2020 May;295(2):328-338
pubmed: 32154773
Radiology. 2019 Mar;290(3):590-606
pubmed: 30694159
Radiology. 2020 Mar;294(3):487-489
pubmed: 31891322
Radiology. 2020 Mar;294(3):645-646
pubmed: 31990628
Radiology. 2020 Jun;295(3):552-561
pubmed: 32286192
NPJ Digit Med. 2021 Jan 21;4(1):10
pubmed: 33479460
Radiology. 2020 Jun;295(3):675-682
pubmed: 32208097
Radiology. 2020 Jul;296(1):216-224
pubmed: 32396042
Radiology. 2020 Sep;296(3):E156-E165
pubmed: 32339081
Radiology. 2020 Mar;294(3):638-644
pubmed: 31990267
Radiology. 2020 Jan;294(1):19-28
pubmed: 31746687
Radiology. 2020 May;295(2):342-350
pubmed: 32096706
Radiology. 2020 Jan;294(1):52-60
pubmed: 31714190
Radiology. 2020 Jul;296(1):225-226
pubmed: 32401156
Radiology. 2020 Dec;297(3):697-698
pubmed: 32965172
Radiology. 2020 Jul;296(1):65-66
pubmed: 32319859
Radiology. 2020 Jan;294(1):31-41
pubmed: 31769740
Radiology. 2020 Oct;297(1):64-72
pubmed: 32780005
Radiology. 2018 Mar;286(3):800-809
pubmed: 29309734
Radiology. 2020 Jun;295(3):626-637
pubmed: 32255417
IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4864-4878
pubmed: 33027004
Radiology. 2020 Dec;297(3):650-651
pubmed: 32996873
Radiology. 2020 Jul;296(1):159-160
pubmed: 32319861
Lancet Digit Health. 2020 Sep;2(9):e489-e492
pubmed: 32864600
Radiology. 2020 Dec;297(3):640-649
pubmed: 32990513
Front Med (Lausanne). 2019 Jul 16;6:162
pubmed: 31380377
Radiology. 2020 Oct;297(1):73-74
pubmed: 32956028
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15849-15854
pubmed: 31341078
Radiology. 2020 Sep;296(3):594-595
pubmed: 32579090
Radiology. 2020 May;295(2):339-341
pubmed: 32159452
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929
Radiographics. 2016 Jul-Aug;36(4):1076-86
pubmed: 27232505

Auteurs

Thomas Eche (T)

Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.).

Lawrence H Schwartz (LH)

Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.).

Fatima-Zohra Mokrane (FZ)

Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.).

Laurent Dercle (L)

Department of Radiology, Toulouse Rangueil Hospital, Toulouse, France (T.E., F.Z.M.); and Department of Radiology, NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, 622 West 168th St, New York, NY 10032 (T.E., L.H.S., L.D.).

Classifications MeSH