Genetically regulated expression in late-onset Alzheimer's disease implicates risk genes within known and novel loci.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
06 12 2021
Historique:
received: 05 03 2021
accepted: 06 10 2021
revised: 27 09 2021
entrez: 7 12 2021
pubmed: 8 12 2021
medline: 1 2 2022
Statut: epublish

Résumé

Late-onset Alzheimer disease (LOAD) is highly polygenic, with a heritability estimated between 40 and 80%, yet risk variants identified in genome-wide studies explain only ~8% of phenotypic variance. Due to its increased power and interpretability, genetically regulated expression (GReX) analysis is an emerging approach to investigate the genetic mechanisms of complex diseases. Here, we conducted GReX analysis within and across 51 tissues on 39 LOAD GWAS data sets comprising 58,713 cases and controls from the Alzheimer's Disease Genetics Consortium (ADGC) and the International Genomics of Alzheimer's Project (IGAP). Meta-analysis across studies identified 216 unique significant genes, including 72 with no previously reported LOAD GWAS associations. Cross-brain-tissue and cross-GTEx models revealed eight additional genes significantly associated with LOAD. Conditional analysis of previously reported loci using established LOAD-risk variants identified eight genes reaching genome-wide significance independent of known signals. Moreover, the proportion of SNP-based heritability is highly enriched in genes identified by GReX analysis. In summary, GReX-based meta-analysis in LOAD identifies 216 genes (including 72 novel genes), illuminating the role of gene regulatory models in LOAD.

Identifiants

pubmed: 34873149
doi: 10.1038/s41398-021-01677-0
pii: 10.1038/s41398-021-01677-0
pmc: PMC8648734
doi:

Types de publication

Journal Article Meta-Analysis Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

618

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM140287
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG011138
Pays : United States
Organisme : NIA NIH HHS
ID : U24 AG021886
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG032984
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG061351
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG068026
Pays : United States
Organisme : NHGRI NIH HHS
ID : R35 HG010718
Pays : United States

Informations de copyright

© 2021. The Author(s).

Références

Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80:1778–83.
pubmed: 23390181 pmcid: 3719424 doi: 10.1212/WNL.0b013e31828726f5
Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L. Alzheimer’s disease in Finnish twins. Lancet. 1996;347:573–8.
pubmed: 8596319 doi: 10.1016/S0140-6736(96)91272-6
Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, et al. Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci. 1997;52:M117–125.
pubmed: 9060980 doi: 10.1093/gerona/52A.2.M117
Pedersen NL, Posner SF, Gatz M. Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings in Swedish twins. Am J Med Genet. 2001;105:724–8.
pubmed: 11803520 doi: 10.1002/ajmg.1608
Ridge PG, Hoyt KB, Boehme K, Mukherjee S, Crane PK, Haines JL, et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol Aging. 2016;41:e13–200.e220.
doi: 10.1016/j.neurobiolaging.2016.02.024
Ridge PG, Mukherjee S, Crane PK, Kauwe JS, Alzheimer’s Disease Genetics Consortium. Alzheimer’s disease: analyzing the missing heritability. PLoS ONE. 2013;8:e79771.
So HC, Gui AH, Cherny SS, Sham PC. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol. 2011;35:310–7.
pubmed: 21374718 doi: 10.1002/gepi.20579
Petty LE, Highland HM, Gamazon ER, Hu H, Karhade M, Chen HH, et al. Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample. Hum Mol Genet. 2019;28:1212–24.
pubmed: 30624610 pmcid: 6423424 doi: 10.1093/hmg/ddy435
Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.
Gamazon ER, Zwinderman AH, Cox NJ, Denys D, Derks EM. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat Genet. 2019;51:933–40.
pubmed: 31086352 pmcid: 6590703 doi: 10.1038/s41588-019-0409-8
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.
pubmed: 30820047 pmcid: 6463297 doi: 10.1038/s41588-019-0358-2
Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.
pubmed: 30617256 pmcid: 6836675 doi: 10.1038/s41588-018-0311-9
Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.
pubmed: 20369019 pmcid: 2848547 doi: 10.1371/journal.pgen.1000888
Su L, Chen S, Zheng C, Wei H, Song X. Meta-analysis of gene expression and identification of biological regulatory mechanisms in Alzheimer’s disease. Front Neurosci. 2019;13:633.
pubmed: 31333395 pmcid: 6616202 doi: 10.3389/fnins.2019.00633
Allen M, Kachadoorian M, Quicksall Z, Zou F, Chai HS, Younkin C, et al. Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res Ther. 2014;6:39.
pubmed: 25324900 pmcid: 4198935 doi: 10.1186/alzrt268
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.
pubmed: 24162737 pmcid: 3896259 doi: 10.1038/ng.2802
Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci. 2017;20:1052–61.
pubmed: 28628103 pmcid: 5759334 doi: 10.1038/nn.4587
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
pubmed: 26258848 pmcid: 4552594 doi: 10.1038/ng.3367
Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018;9:1825.
pubmed: 29739930 pmcid: 5940825 doi: 10.1038/s41467-018-03621-1
Gerring ZF, Lupton MK, Edey D, Gamazon ER, Derks EM. An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer’s disease. Alzheimers Res Ther. 2020;12:43.
pubmed: 32299494 pmcid: 7164172 doi: 10.1186/s13195-020-00611-8
Huckins LM, Dobbyn A, Ruderfer DM, Hoffman G, Wang W, Pardiñas AF, et al. Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat Genet. 2019;51:659–74.
pubmed: 30911161 pmcid: 7034316 doi: 10.1038/s41588-019-0364-4
Sanchez-Roige S, Fontanillas P, Elson SL, Research T, Pandit A, Schmidt EM, et al. Genome-wide association study of delay discounting in 23,217 adult research participants of European ancestry. Nat Neurosci. 2018;21:16–18.
pubmed: 29230059 doi: 10.1038/s41593-017-0032-x
Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 2019;15:e1007889.
pubmed: 30668570 pmcid: 6358100 doi: 10.1371/journal.pgen.1007889
GTEx Consortium. et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.
pmcid: 5776756 doi: 10.1038/nature24277
Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59:1737–46.
pubmed: 12433261 doi: 10.1001/archneur.59.11.1737
Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9.
pubmed: 20042704 pmcid: 2809036 doi: 10.1212/WNL.0b013e3181cb3e25
Lee JH, Cheng R, Graff-Radford N, Foroud T, Mayeux R, National Institute on Aging Late-Onset Alzheimer’s Disease Family Study Group. Analyses of the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study: implication of additional loci. Arch Neurol. 2008;65:1518–26.
pubmed: 19001172 pmcid: 2694670 doi: 10.1001/archneur.65.11.1518
Green RC, Cupples LA, Go R, Benke KS, Edeki T, Griffith PA, et al. Risk of dementia among white and African American relatives of patients with Alzheimer disease. JAMA. 2002;287:329–36.
pubmed: 11790212 doi: 10.1001/jama.287.3.329
Bennett DA, Schneider JA, Buchman AS, Mendes de Leon C, Bienias JL, Wilson RS. The Rush Memory and Aging Project: study design and baseline characteristics of the study cohort. Neuroepidemiology. 2005;25:163–75.
pubmed: 16103727 doi: 10.1159/000087446
Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54:713–20.
pubmed: 17553421 pmcid: 2587162 doi: 10.1016/j.neuron.2007.05.022
Kamboh MI, Minster RL, Demirci FY, Ganguli M, Dekosky ST, Lopez OL, et al. Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging. 2012;33:518–21.
pubmed: 20570404 doi: 10.1016/j.neurobiolaging.2010.04.015
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49:1373–84.
pubmed: 28714976 pmcid: 5669039 doi: 10.1038/ng.3916
Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41.
pubmed: 21460841 pmcid: 3090745 doi: 10.1038/ng.801
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014;24:14–24.
pubmed: 24092820 pmcid: 3875855 doi: 10.1101/gr.155192.113
Hoffman GE, Bendl J, Voloudakis G, Montgomery KS, Sloofman L, Wang YC, et al. CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Sci Data. 2019;6:180.
pubmed: 31551426 pmcid: 6760149 doi: 10.1038/s41597-019-0183-6
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.
doi: 10.1126/science.aaz1776
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 2021;22:49.
pubmed: 33499903 pmcid: 7836161 doi: 10.1186/s13059-020-02252-4
Ma C, Blackwell T, Boehnke M, Scott LJ. Go TDi. Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants. Genet Epidemiol. 2013;37:539–50.
pubmed: 23788246 pmcid: 4049324 doi: 10.1002/gepi.21742
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.
pubmed: 16862161 doi: 10.1038/ng1847
Naj AC, Schellenberg GD. Alzheimer’s Disease Genetics C. Genomic variants, genes, and pathways of Alzheimer’s disease: an overview. Am J Med Genet B Neuropsychiatr Genet. 2017;174:5–26.
pubmed: 27943641 pmcid: 6179157 doi: 10.1002/ajmg.b.32499
Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI, et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet. 2009;2:73–80.
pubmed: 20031568 pmcid: 2875693 doi: 10.1161/CIRCGENETICS.108.829747
THE ARIC INVESTIGATORS. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol. 1989;129:687–702.
doi: 10.1093/oxfordjournals.aje.a115184
Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991;1:263–76.
pubmed: 1669507 doi: 10.1016/1047-2797(91)90005-W
Dawber TR, Kannel WB. The Framingham study. An epidemiological approach to coronary heart disease. Circulation. 1966;34:553–5.
pubmed: 5921755 doi: 10.1161/01.CIR.34.4.553
Hofman A, Breteler MM, van Duijn CM, Janssen HL, Krestin GP, Kuipers EJ, et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol. 2009;24:553–72.
pubmed: 19728115 pmcid: 2744826 doi: 10.1007/s10654-009-9386-z
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–93.
pubmed: 19734902 pmcid: 2845877 doi: 10.1038/ng.440
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.
pubmed: 19734903 doi: 10.1038/ng.439
Luck T, Riedel-Heller SG, Kaduszkiewicz H, Bickel H, Jessen F, Pentzek M, et al. Mild cognitive impairment in general practice: age-specific prevalence and correlate results from the German study on ageing, cognition and dementia in primary care patients (AgeCoDe). Dement Geriatr Cogn Disord. 2007;24:307–16.
pubmed: 17848793 doi: 10.1159/000108099
Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement. 2014;10:76–83.
pubmed: 23375567 doi: 10.1016/j.jalz.2012.09.017
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.
pubmed: 20616382 pmcid: 2922887 doi: 10.1093/bioinformatics/btq340
Dewey M. metap: meta-analysis of significance values. 2018.
Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat. 2000;25:60–83.
doi: 10.3102/10769986025001060
Mancuso N, Freund MK, Johnson R, Shi H, Kichaev G, Gusev A, et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet. 2019;51:675–82.
pubmed: 30926970 pmcid: 6619422 doi: 10.1038/s41588-019-0367-1
Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Yavorska OO, Burgess S. Mendelian randomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46:1734–9.
pubmed: 28398548 pmcid: 5510723 doi: 10.1093/ije/dyx034
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.
pubmed: 12883005 pmcid: 170937 doi: 10.1073/pnas.1530509100
Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.
pubmed: 26414678 pmcid: 4626285 doi: 10.1038/ng.3404
Leung YY, Valladares O, Chou YF, Lin HJ, Kuzma AB, Cantwell L, et al. NIAGADS: the NIA genetics of Alzheimer’s disease data storage site. Alzheimer’s Dement. 2016;12:1200–3.
doi: 10.1016/j.jalz.2016.08.018
Zhang Q, Sidorenko J, Couvy-Duchesne B, Marioni RE, Wright MJ, Goate AM, et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat Commun. 2020;11:4799.
pubmed: 32968074 pmcid: 7511365 doi: 10.1038/s41467-020-18534-1
Mukhamedyarov MA, Rizvanov AA, Yakupov EZ, Zefirov AL, Kiyasov AP, Reis HJ, et al. Transcriptional analysis of blood lymphocytes and skin fibroblasts, keratinocytes, and endothelial cells as a potential biomarker for Alzheimer’s disease. J Alzheimers Dis. 2016;54:1373–83.
pubmed: 27589530 pmcid: 5260811 doi: 10.3233/JAD-160457
Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J. 2010;10:375–84.
pubmed: 20029386 doi: 10.1038/tpj.2009.69
Li G, Bekris LM, Leong L, Steinbart EJ, Shofer JB, Crane PK, et al. TOMM40 intron 6 poly-T length, age at onset, and neuropathology of AD in individuals with APOE epsilon3/epsilon3. Alzheimers Dement. 2013;9:554–61.
pubmed: 23183136 doi: 10.1016/j.jalz.2012.06.009
Cruchaga C, Nowotny P, Kauwe JS, Ridge PG, Mayo K, Bertelsen S, et al. Association and expression analyses with single-nucleotide polymorphisms in TOMM40 in Alzheimer disease. Arch Neurol. 2011;68:1013–9.
pubmed: 21825236 pmcid: 3204798 doi: 10.1001/archneurol.2011.155
Payton A, Sindrewicz P, Pessoa V, Platt H, Horan M, Ollier W, et al. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging. Neurobiol Aging. 2016;39:217 e211–217.
doi: 10.1016/j.neurobiolaging.2015.11.017
Mise A, Yoshino Y, Yamazaki K, Ozaki Y, Sao T, Yoshida T, et al. TOMM40 and APOE gene expression and cognitive decline in Japanese Alzheimer’s disease subjects. J Alzheimers Dis. 2017;60:1107–17.
pubmed: 28984592 doi: 10.3233/JAD-170361
Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl Psychiatry. 2020;10:88.
pubmed: 32152295 pmcid: 7062839 doi: 10.1038/s41398-020-0769-y
Spinola M, Galvan A, Pignatiello C, Conti B, Pastorino U, Nicander B, et al. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene. 2005;24:5502–9.
pubmed: 15870694 doi: 10.1038/sj.onc.1208687
Broce IJ, Tan CH, Fan CC, Jansen I, Savage JE, Witoelar A, et al. Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer’s disease. Acta Neuropathol. 2019;137:209–26.
pubmed: 30413934 doi: 10.1007/s00401-018-1928-6
Seipold L, Saftig P. The emerging role of tetraspanins in the proteolytic processing of the amyloid precursor protein. Front Mol Neurosci. 2016;9:149.
pubmed: 28066176 pmcid: 5174118 doi: 10.3389/fnmol.2016.00149
Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, et al. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharm Ther. 2007;114:155–70.
doi: 10.1016/j.pharmthera.2007.01.010
Noch EK, Khalili K. The role of AEG-1/MTDH/LYRIC in the pathogenesis of central nervous system disease. Adv Cancer Res. 2013;120:159–92.
pubmed: 23889991 pmcid: 4204483 doi: 10.1016/B978-0-12-401676-7.00006-1
Bhattacharya A, Li Y, Love MI. MOSTWAS: multi-omic strategies for transcriptome-wide association studies. PLoS Genet. 2021;17:e1009398.
pubmed: 33684137 pmcid: 7971899 doi: 10.1371/journal.pgen.1009398
Nagpal S, Meng X, Epstein MP, Tsoi LC, Patrick M, Gibson G, et al. TIGAR: an improved Bayesian tool for transcriptomic data imputation enhances gene mapping of complex traits. Am J Hum Genet. 2019;105:258–66.
pubmed: 31230719 pmcid: 6698804 doi: 10.1016/j.ajhg.2019.05.018
Basu M, Wang K, Ruppin E, Hannenhalli S. Predicting tissue-specific gene expression from whole blood transcriptome. Sci Adv. 2021;7:eabd6991.
Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci Rep. 2015;5:15145.
pubmed: 26477495 pmcid: 4609956 doi: 10.1038/srep15145
Buil A, Brown AA, Lappalainen T, Viñuela A, Davies MN, Zheng HF, et al. Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nat Genet. 2015;47:88–91.
pubmed: 25436857 doi: 10.1038/ng.3162

Auteurs

Hung-Hsin Chen (HH)

Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Lauren E Petty (LE)

Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Jin Sha (J)

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Yi Zhao (Y)

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Amanda Kuzma (A)

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Otto Valladares (O)

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

William Bush (W)

Department of Population & Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.

Adam C Naj (AC)

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Eric R Gamazon (ER)

Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Jennifer E Below (JE)

Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. jennifer.e.below@vanderbilt.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH