Insect herbivory immediately before the eclipse of the gymnosperms: The Dawangzhangzi plant assemblage of Northeastern China.

Cretaceous terrestrial revolution Czekanowskia Liaoningocladus boii Mesozoic Yixian Formation broadleaved conifer damage type herbivory index ovipositor

Journal

Insect science
ISSN: 1744-7917
Titre abrégé: Insect Sci
Pays: Australia
ID NLM: 101266965

Informations de publication

Date de publication:
Oct 2022
Historique:
revised: 28 09 2021
received: 22 05 2021
accepted: 18 11 2021
pubmed: 8 12 2021
medline: 1 10 2022
entrez: 7 12 2021
Statut: ppublish

Résumé

The Early Cretaceous terrestrial revolution involved global shifts from gymnosperm- to angiosperm-dominated floras. However, responses of insect herbivores to these changes remain unexamined. We evaluated 2 176 highly sampled plant specimens representing 62 species/morphotypes from the 126 Ma Dawangzhangzi plant assemblage of Northeastern China. Our study consisted of horsetails, ferns, ginkgoaleans, czekanowskialeans, conifers, and an angiosperm. Their herbivory was evaluated by the functional feeding groups of hole feeding, margin feeding, and surface feeding (ectophytic feeders); piercer and suckers, and ovipositing insects (ectoendophytic feeders); mining, galling, and borings (endophytic feeders); and pathogens, collectively constituting 65 damage types (DTs). The plant assemblage was assessed for herbivory richness by DT richness, component community structure, and DT specialization on plant hosts; for herbivory intensity, it was evaluated for DT frequency, herbivorized surface area, and feeding event occurrences. Using feeding event occurrences, the data supported seven species/morphotypes as most intensely herbivorized: Liaoningocladus boii (76.6%), Czekanowskia sp. 1 (8.4%), Czekanowskia rigida (4.10%), Lindleycladus lanceolatus (3.5%), Ginkgoites sp. 2 (2.0%), Podozamites sp. 1 (1.1%), and Solenites sp. 1 (0.9%). The most herbivorized taxa were pinaleans (conifers), then czekanowskialeans, and lastly ginkgoaleans; the monodominant component community was the conifer Liaoningocladus boii. DT host specialization levels were low. The plant assemblage had an overall low 0.86% of foliage removed by herbivores, explained by physical and chemical antiherbivore defenses, and parasitoid attack. Although Paleozoic, gymnosperm-dominated assemblages had greater herbivory, component community structure of the three most herbivorized taxa are more similar to modern bracken fern and willow than modern gymnosperm taxa.

Identifiants

pubmed: 34874612
doi: 10.1111/1744-7917.12988
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1483-1520

Informations de copyright

© 2021 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

Références

Alekseyev, A.C., Dmitriev, V.Y. and Ponomarenko, A.G. (2001) The Evolution of Taxonomic Diversity. Geos, Moscow (in Russian).
Andres, M.R. and Connor, E.F. (2003) The community-wide and guild-specific effects of pubescence on the folivorous insects of manzanitas Arctostaphylos spp. Ecological Entomology, 28, 383-396.
Arnold, J.P. and Fonseca, C.R. (2011) Herbivory, pathogens, and epiphylls in Araucaria Forest and ecologically-managed tree monocultures. Forest Ecology and Management, 262, 1041-1046.
Axsmith, B.J. and Jacobs, B.F. (2005) The conifer Frenelopsis ramoissima (Cheirolepidiaceae) in the Lower Cretaceous of Texas: Systematic, biogeographical and paleoecological implications. International Journal of Plant Sciences, 166, 327-337.
Barba-Montoya, J., dos Reis, M., Schneider, H., Donoghue, P.C.J. and Yang, Z. (2018) Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytologist, 218, 819-214.
Beck, A.L. and Labandeira, C.C. (1998) Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 142, 139-173.
Björkman, C. and Larsson, S. (1991) Host-plant specialization in needle-eating insects of Sweden. Forest Insect Guilds: Patterns of Interaction with Host Trees. (eds. Y.N. Baranchikov, W.J. Mattson, F.P. Hain & T.L. Payne). U.S.D.A. Forest Service General Technical Report, NE-153, pp. 1-20.
Boecklen, W.J. and Hoffman, M.T. (1993) Sex-biased herbivory in Ephedra trifurca: The importance of sex by environment interactions. Oecologia, 96, 49-55.
Bond, W.J. and Scott, A.C. (2010) Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 188, 1137-1150.
Braz, F.F., Utida, G., Bernardes-de-Oliveira, M.E.C., Mohr, B. and Wappler, T. (2011) Marcas de atividades de insetos em folhas ninfealeanas eocretáceas Formação Crato, Bacia do Araripe, Brasil. Paleontologia: Cenários de Vida. Congresso Brasileiro de Paleontologia, 4, 209-219. Natal, Brazil.
Busby, P.E., Lamit, L.J., Keith, A.R., Newcombe, G., Gehring, C.A., Whitham, T.G., et al. (2015) Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure. Ecology, 96, 1974-1984.
Cardinal, S. and Danforth, B.N. (2013) Bees diversified in the age of eudicots. Proceedings of the Royal Society B: Biological Sciences, 280, 20122686.
Carvalho, M.R., Wilf, P., Barrios, H., Windsor, D.M., Currano, E.D., Labandeira, C.C. et al. (2014) Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLoS ONE, 9, e94950.
Cascales-Miñana, B., Cleal, C.J. and Gerienne, P. (2016) Is Darwin's ‘Abominable Mystery’ still a mystery today? Cretaceous Research, 61, 256-262.
Castillo-Guevara, C. and Rico-Gray, V. (2003) The role of macrozamin and cycasin in cycads (Cycadales) as antiherbivore defenses. Journal of the Torrey Botanical Society, 130, 206-217.
Caveny, S., Gharlet, D.A., Freitag, H., Maier-Stolte, M. and Starratt, A.N. (2001) New observations on the secondary chemistry of world Ephedra (Ephedraceae). American Journal of Botany, 88, 1199-1208.
Celedon, J.M., Whitehill, J.G.A., Madilao, L.L. and Bohlmann, J. (2020) Gymnosperm glandular trichomes: Expanded dimensions of the conifer terpenoid defense system. Scientific Reports, 10, 12464. .
Chang, S.C., Gao, K.Q., Zhou, C.F. and Jourdan, F. (2017) New chronostratigraphic constraints on the Yixian Formation with implications for the Jehol Biota. Palaeogeography Palaeoclimatology Palaeoecology, 487, 399-406.
Choong, M.F. (1996) What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Functional Ecology, 10, 668-674.
Clark, D.B. and Clark, D.A. (1991) Herbivores, herbivory, and plant phenology: patterns and consequences in a tropical rain-forest cycad. Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions (eds. P.W. Price, T.M. Lewinsohn, G.W. Fernandes & W.W. Benson), pp. 209-225. John Wiley, New York.
Coiffard, C., Gomez, B., Kvaček, J. and Thevenard, F. (2006) Early angiosperm ecology: Evidence from the Albian-Cenomanian of Europe. Annals of Botany, 98, 495-502.
Coley, P.D. and Barone, J.A. (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305-335.
Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., et al. (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5, 3-21.
Condamine, F.L., Silvestro, D., Koppelhus, E.B. and Antonelli, A. (2020) The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences USA, 117, 28867-28875.
Connor, E.F. (1988) Cohort and death assemblage estimates of survival rates and causes of mortality in Trachys ovatus (Weber) (Coleoptera: Buprestidae). American Midland Naturalist, 120, 150-155.
Cornell, H.V. (1989) Endophage-ectophage rations and plant defense. Evolutionary Ecology, 2, 64-76.
Crane, P. R. (1996) The fossil history of the Gnetales. International Journal of Plant Sciences, 157, S50-S57.
de Boer, H.J., Eppinga, M.B., Wassen, M.J. and Dekker, S.C. (2012) A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3, 1221, https://doi.org/10.1038/ncomms2217
Deng, S.H., Yang, X.J. and Zhou, Z.Y. (2020) A new Ginkgo from the Lower Cretaceous of Liaoning, Northeast China and its evolutionary implications. Review of Palaeobotany and Palynology, 283, 104315.
Dilcher, D.L., Sun, G., Ji, Q. and Li, H.Q. (2007) An early infructescence Hyrcantha descussata (comb. nov.) from the Yixian Formation in northeastern China. Proceedings of the National Academy of Sciences USA, 104, 9370-9374.
Ding, Q.H., Tian, N., Wang, Y.D., Jiang, Z.K., Chen, S.W., Wang, D. et al. (2016) Fossil coniferous wood from the Early Cretaceous Jehol Biota in western Liaoning, NE China: New material and palaeoclimate implications. Cretaceous Research, 61, 57-60.
Ding, Q.H., Zhang, L.D., Guo, S.Z., Zhang, C.J., Peng, Y.D., Jia, B. et al. (2003) Study on the paleoecology of Yixian Formation in Beipiao Area, western Liaoning Province, China. Geology and Resources, 12, 9-18.
Ding, Q.L., Labandeira, C.C., Meng, Q.M. and Ren, D. (2015) Insect herbivory, plant-host specialization and tissue partitioning on mid Mesozoic broadleaved conifers of Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 259-273.
Ding, Q.L., Labandeira, C.C. and Ren, D. (2014) Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Systematics & Phylogeny, 72, 281-308.
Dong, M. and Sun, G. (2012) Ginkgo huolinhensis sp. nov. from the Lower Cretaceous of Huolinhe Coal Field, Inner Mongolia, China. Acta Geologica Sinica, 86, 11-19.
Donovan, M.P., Wilf, P., Iglesias, A., Cúneo, N.R. and Labandeira, C.C. (2020) Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Communications Biology, 3, 708, https://doi.org/10.1038/s42003-020-01428-9.
Edwards, P.J. and Wratten, S.D. (1983) Wound induced defences in plants and their consequences for patterns of insect grazing. Oecologia, 59, 88-93.
Evans, A.V. and Steury, V.W. (2012) The cicada parasite beetles (Coleoptera: Rhipiceridae) of Virginia. Banisteria, 39, 65-70.
Feener, D.H. Jr. and Brown, B.V. (1997) Diptera as parasitoids. Annual Review of Entomology, 42, 73-97.
Feller, I.C. (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs, 65, 477-505.
Filho, E.B.D.S., Adami-Rodrigues, K., Lima, F.J.D., Bantim, R.A.M., Wappler, T. and Saraiva, A.Á.F. (2017) Evidence of plant-insect interaction in the Early Cretaceous flora from the Crato Formation, Araripe Basin, Northeast Brazil. Historical Biology, 31, 926-937.
Fürsich, F.T., Sha, J.G., Jiang, B.Y. and Pan, Y.H. (2007) High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 434-457.
Futuyma, D.J. and Mitter, C. (1996) Insect-plant interactions: The evolution of component communities. Philosophical Transactions of the Royal Society of London B, 351, 1361-1366.
Gao, T., Shih, C. and Ren, D. (2021) Behaviors and interactions of insects in mid-Mesozoic ecosystems of northeastern China. Annual Review of Entomology, 66, 337-354.
García-Guzmán, G. and Dirzo, R. (2001) Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: Incidence, spatiotemporal variation, and mechanisms of infection. American Journal of Botany, 88, 634-645.
Gauld, I. and Bolton, B. (1988) The Hymenoptera. British Museum (Natural History), London.
Gauld, I.D. (2008) Evolutionary patterns of host utilization by ichneumonid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biological Journal of the Linnaean Society, 35, 351-377.
Gnaedinger, S.C., Adami-Rodrigues, K. and Gallego, O.F. (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: Ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios, 47, 221-236.
González-Juárez, D.E., Escobedo-Moratilla, A., Flores, J., Hidalgo-Figueroa, S., Martínez-Tagüeña, N., Morales-Jiménez, J. et al. (2020) A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules (Basel, Switzerland), 25, 3283.
Guo, C.Q. and Yao, J.X. (2017) New discovery of reproductive organs and spores in situ of Ginkgoales and Czekanowskiales from the Middle Jurassic of Shaanxi, China. Acta Geologica Sinica, 91, 2314-2315.
Guo, S.X. and Wu, X.W. (2000) Ephedrites from latest Jurassic Yixian Formation in western Liaoning, Northeast China. Acta Palaeontologica Sinica, 39, 81-91.
Handley, R., Ekbom, B. and Ågren, J. (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecological Entomology, 30, 284-292.
Hanley, M.E., Lamont, B.B., Fairbanks, M.M. and Rafferty, C.M. (2007) Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8, 157-178.
Heer, O. (1876) Beitrage zur Jura-Flora Ostsibiriens und des Amurlandes. Mémoires de l'Académie impériale des sciences de St. Pétersbourg. 22, 12.
Hespenheide, H.A. and Kim, C.O. (1992) Clutch size, survivorship, and biology of larval Pachyschelus psychotriae Fisher (Coleoptera: Buprestidae). Annals of the Entomological Society of America, 85, 48-52.
Hochuli, D.F. (1996) The ecology of plant-insect interactions: Implications of digestive strategy for feeding by phytophagous insects. Oikos, 75, 133-141.
Hsieh, T.C., Ma, K.H. and Chao, A. (2016) iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451-1456.
Huang, W., Dilcher, D.L., Wang, H.S., Na, Y.L., Li, Y.F., Li, T. et al. (2017) First record of Sphenarion (Czekanowskiales) with epidermal structures from the Middle Jurassic of Inner Mongolia, China. Palaeoworld, 26, 510-518.
Jarzembowski, E.A. and Ross, A.J. (1996) Insect origination and extinction in the Phanerozoic. Biotic Recovery from Mass Extinctions. (ed. M.B. Hart). Biotic Recovery from Mass Extinctions, 102, pp. 65-78. Geological Society Special Publication.
Jiang, B.Y. and Sha, J.G. (2007) Preliminary analysis of the depositional environments of the Lower Cretaceous Yixian Formation in the Sihetun area, western Liaoning, China. Cretaceous Research, 28, 183-193.
Krassilov, V.A., Silantieva, N. and Lewy, Z. (2008) Traumas on fossil leaves from the Cretaceous of Israel. Plant-Arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel (eds. V. Krassilov & A. Rasnitsyn), Pensoft, Sofia and Moscow. pp. 7-187.
Kwon, M., Ahn, Y.J., Yoo, K.J. and Choi, B.R. (1996) Potent insecticidal activity of extracts from Ginkgo biloba leaves against Nilapalvata lugens (Homoptera: Delphacidae). Applied Entomology and Zoology, 31, 162-165.
Labandeira, C.C. (2007) Assessing the fossil record of plant-insect associations: Ichnodata versus body-fossil data. Sediment-Organism Interactions: A Multifaceted Ichnology (eds. R.G. Bromley, L.A. Buatois, G. Mángano, J.F. Genise & R.N. Melchor). Society for Sedimentary Geology, Tulsa, Oklahoma, USA. SEPM Special Publication. 88, pp. 9-26.
Labandeira, C.C. (2014) Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life (ed. P. Pontarotti), Springer, Cham, Switzerland. pp. 261-299.
Labandeira, C.C. (2019) The fossil record of insect mouthparts: Innovation, functional convergence, and associations with other organisms. Insect Mouthparts-Form, Function, Development and Performance (ed. H.W. Krenn). Zoological Monographs. 5, pp. 567-670. Cham, Switzerland: Springer.
Labandeira, C.C. (2021) Ecology and evolution of gall-inducing arthropods: The pattern from the terrestrial fossil record. Frontiers in Ecology & Evolution, 9, 632449.
Labandeira, C.C. and Allen, E. (2007) Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other late Paleozoic floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 197-219.
Labandeira, C.C., Kustatscher, E. and Wappler, T. (2016) Floral assemblages and patterns of herbivory during the Permian to Triassic of Northeastern Italy. PLoS ONE, 11, e0165205.
Labandeira, C.C. and Li, L.F. (2021) The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution. The Evolution and Fossil Record of Parasitism-Identification and Macroevolution of Parasites (eds. K. De Baets & J. Huntley). Topics in Geobiology. 49, pp. 377-533. Dordrecht, Germany: Springer, https://doi.org/10.1007/978-3-030-42484-8_11
Labandeira, C.C. and Prevec, R. (2014) Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 4, 1-16.
Labandeira, C.C. and Sepkoski, J.J. Jr. (1993) Insect diversity in the fossil record. Science, 261, 310-315.
Labandeira, C.C., Wilf, P., Johnson, K.R. and Marsh, F. (2007) Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (version 3.0). Smithsonian Institution (http://paleobiology.si.edu/pdfs/insectDamageGuide3.01.pdf
Lafferty, K.D., Dobson, A.P. and Kuris, A.M. (2006) Parasites dominate food web links. Proceedings of the National Academy of Sciences USA, 103, 11211-11216.
Lawton, J.H. (1976) The structure of the arthropod community on bracken. Botanical Journal of the Linnean Society, 73, 187-216.
Leng, Q. and Friis, E.M. (2003) Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systematics and Evolution, 241, 77-88.
Levin, D.A. (1973) The role of trichomes in plant defense. Quarterly Review of Biology, 48, 3-15.
Li, N., Li, Y., Wang, L.X., Zheng, S.L. and Zhang, W. (2004) A new species of Weltrichia Braun in North China with a special bennettitalean male reproductive organ. Acta Botanica Sinica, 46, 1269-1275.
Li, T.L., Yi, T.S., Gao, L.M., Ma, P.F., Zhang, T., Yang, J.B. et al. (2019) Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 5, 461-470.
Li, Y., Sha, J.G., Wang, Q.F. and Chen, S.W. (2007) Lacustrine tempestite litho- and biofacies in the Lower Cretaceous Yixian Formation, Beipiao, western Liaoning, northeast China. Cretaceous Research, 28, 194-198.
Li, Y.F., Sun, C.L., Li, T., Na, Y.L., Chen, Y.J. and Xing, D. (2015) Solenites (Czekanowskiales) from the late Mesozoic Jehol Biota of southeastern Jilin, China and its paleoclimatic implications. Acta Geologica Sinica, 89, 1088-1102.
Lin, X.D., Labandeira, C.C., Ding, Q.L., Meng, Q.M. and Ren, D. (2019) Exploiting nondietary resources in deep time: Patterns of oviposition on mid-Mesozoic plants from Northeastern China. International Journal of Plant Sciences, 180, 411-457.
Litvak, M.E. and Monson, R.K. (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia, 114, 531-540.
Liu, Q., Liu, X.M., Zhang, Q.Q., Chen, J., Zheng, X.T., Zhang, W.W. et al. (2018) High niche diversity in Mesozoic pollinating lacewings. Nature Communications, 9, 3793.
Liu, X.Q., Li, C.S. and Wang, Y.F. (2006) Plants of Leptostrobus Heer (Czekanowskiales) from the Early Cretaceous and Late Triassic of China, with discussion of the genus. Journal of Integrative Plant Biology, 48, 137-147.
Liu, Z.L., Hou, Y.M. and Wang, X. (2019) Zhangwuia: An enigmatic organ with a bennettitalean appearance and enclosed ovules. Transactions of the Royal Society of Edinburgh (Earth and Environmental Science), 108, 419-428.
Lloyd, G.T., Davis, K.E., Pisani, D., Tarver, J.E., Ruta, M., Sakamoto, M. et al. (2008) Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of the Royal Society B, 275, 2483-2490.
Maccracken, S.A., Jonson, J.C., Miller, I.M. and Labandeira, C.C. (2021) A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology, 19, 131-144.
Maccracken, S.A. and Labandeira, C.C. (2020) The Middle Permian South Ash Pasture assemblage of north-central Texas: Coniferophyte and gigantopterid herbivory and longer-term herbivory trends. International Journal of Plant Sciences, 181, 342-362.
Makarkin, V.N., Yang, Q., Peng, Y.Y. and Ren, D. (2012) A comparative overview of the neuropteran assemblage of the Lower Cretaceous Yixian Formation (China), with description of a new genus of Psychopsidae (Insecta: Neuroptera). Cretaceous Research, 35, 57-68.
Martill, D.M., Bechly, G. and Loveridge, R.F. (2007) The Crato Fossil Beds of Brazil: Window into an Ancient World. Cambridge University Press, Cambridge, United Kingdom. pp. 1-624.
Matsukawa, M., Shibata, K., Sato, K., Xing, X. and Lockley, M.G. (2014) The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biological Journal of the Linnean Society, 113, 836-853.
Matsumoto, T. and Sei, T. (1987) Antifeedant activities of Ginkgo biloba L. components against the larvae of Pieris rapae crucivora. Agricultural and Biological Chemistry, 51, 249-250.
McCoy, V.E., Wappler, T. and Labandeira, C.C. (2021) Exceptional fossilization of ecological interactions: Plant defenses during the four major expansions of arthropod herbivory in the fossil record. Fossilization: Understanding the Material Nature of Ancient Plants and Animals (eds. C.T. Gee, V.E. McCoy & P.M. Sander), Johns Hopkins University Press, Baltimore. pp. 187-220.
McCune, B. and Grace, J.B. (2002) Analysis of Ecological Communities. MJM Software Design, Glenden Beach, Oregon. pp. 375-381.
Mehltreter, K., Hülber, K. and Hietz, P. (2006) Herbivory on epiphytic ferns of a Mexican cloud forest. Fern Gazette, 17, 303-309.
Mehltreter, K. and Tolome, J. (2003) Herbivory on three tropical fern species of a Mexican cloud forest. Pteridology in the New Millennium (eds. S. Chandra and M. Srivastava), Kluwer, Dordrecht. pp. 375-381.
Meng, Q.M., Labandeira, C.C., Ding, Q.L. and Ren, D. (2017) The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of Northeastern China. Insect Science, 26, 171-179.
Meredith, R.W., Janecka, J.E., Gatesy, J., Ryder, O.A., Fisher, C.A., Teeling, E.C. et al. (2011) Impacts of the Cretaceous Terrestrial Revolution and K-Pg extinction on mammal diversification. Science, 334, 521-524.
Mithöfer, A. and Boland, W. (2012) Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 63, 431-450.
Mohanta, T.K., Occhipinti, A., Zebelo, S.A., Foti, M., Fliegmann, J., Bossi, S. et al. (2012) Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE, 7, e32822,
Moreira, X., Zas, R. and Sampedro, L. (2012) Differential allocation of constitutive and induced chemical defenses in pine tree juveniles: A test of the optimal defense theory. PLoS ONE, 7, e34006.
Mumm, R. and Hilker, M. (2006) Direct and indirect chemical defence of pine against folivorous insects. Trends in Plant Science, 11, 351-358.
Nishida, T., Takakura, K. and Iwao, K. (2015) Host specialization by reproductive interference between closely related herbivorous insects. Population Ecology, 57, 273-281.
Picard, W.F. (2008) Lactifers and secretory ducts: Two other tube systems in plants. New Phytologist, 177, 877-888.
Pires, E.F. and Guerra-Sommer, M. (2009) Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brasil. Journal of South American Earth Sciences, 27, 50-59.
Pott, C., McLoughlin, S., Wu, S.Q. and Friis, E.M. (2012b) Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: Mechanical defence against herbivorous arthropods. Review of Palaeobotany Palynology, 169, 48-60.
Pott, C., McLoughlin, S.M., Lindström, A., Wu, S.Q. and Friis, E.M. (2012a) Baikalophyllum lobatum and Rehezamites anisolobus: Two seed plants with “cycadophyte” foliage from the early Cretaceous of Eastern Asia. International Journal of Plant Sciences, 173, 192-208.
Potter, D.A. (1985) Population regulation of the native holly leafminer, Phytomyza ilicicola Loew (Diptera: Agromyzidae) on American holly. Oecologia, 66, 499-505.
Prado, A., Sierra, A., Windsor, D. and Bede, J.C. (2014) Leaf traits and herbivory levels in a tropical gymnosperm, Zamia stevensonii (Zamiaceae). American Journal of Botany, 101, 437-447.
Prevec, R., Labandeira, C.C., Neveling, J., Gastaldo, R.A., Looy, C.V. and Bamford, M. (2009) Portrait of a Gondwanan ecosystem: A new late Permian fossil locality from KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 156, 454-493.
Qin, Z.H., Xi, D.P., Shi, Z.G., Xu, Y.K., Wei, F., Yu, Z.Q. et al. (2019) Lagerstätte fossils from the Lower Cretaceous Yixian Formation of the Pingquan Basin, North China: Stratigraphical correlation and palaeoenvironmental implications. Lethaia, 52, 335-349.
Queiroz, J.M. (2002) Distribution, survivorship and mortality sources in immature stages of the neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae). Brazilian Journal of Biology, 62, 69-76.
Ren, D., Shih, C.K., Gao, T.P., Yao, Y.Z. and Wang, Y.J., eds. (2019) Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. Wiley Blackwell, New York. pp. 1-708.
Robledo, J.M., Pinheiro, E.R.S., Gnaedinger, S.C. and Wappler, T. (2018) Plant-insect interactions on dicots and ferns from the Miocene of Argentina. Palaios, 33, 338-352.
Root, R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 43, 95-124. https://doi.org/10.2307/1942161.
Schachat, S., Labandeira, C.C., Gordon, J., Chaney, D., Levi, S., Halthore, M.N., et al. (2014) Plant-insect interactions from Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: The early spread of herbivory in riparian environments. International Journal of Plant Sciences, 175, 855-890. https://doi.org/10.1086/677679.
Schachat, S.R., Labandeira, C.C. and Chaney, D.S. (2015) Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: Opportunism in a balanced component community. Palaeogeography, Palaeoclimatology, Palaeoecology, 440, 830-847. https://doi.org/10.1016/j.palaeo.2015.10.001.
Schachat, S.R., Labandeira, C.C., Clapham, M.E. and Payne, J.L. (2019) A Cretaceous peak in family-level insect diversity estimated with mark-recapture methodology. Proceedings of the Royal Society B: Biological Sciences, 286, 20192054.
Schachat, S.R., Labandeira, C.C. and Maccracken, S.A. (2018) The importance of sampling standardization for comparisons of insect herbivory in deep time: A case study from the late Palaeozoic. Royal Society Open Science, 5, 171991.
Schachat, S.R., Maccracken, S.A. and Labandeira, C.C. (2020) Sampling fossil floras for the study of insect herbivory: How many leaves is enough? Fossil Record, 23, 15-32. https://doi.org/10.5194/fr-23-15-2020.
Schachat, S.R., Payne, J.L., Boyce, C.K. and Labandeira, C.C. (2021) Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Review of Palaeobotany and Palynology, 297(104564), https://doi.org/10.1016/j.revpalbo.2021.104564.
Schneider, D., Wink, M., Sporer, F. and Lounibos, P. (2002) Cycads: Their evolution, toxins, herbivores and insect pollinators. Die Naturwissenschaften, 89, 281-294.
Schneider, H. (2016) The ghost of the Cretaceous terrestrial revolution in the evolution of fern-sawfly associations. Journal of Systematics and Evolution, 54, 93-105.
Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallón, S. and Lupia, R. (2004) Ferns diversified in the shadow of angiosperms. Nature, 428, 553-557.
Schuldt, A., Hönig, L., Li, Y., Fichtner, A., Härdtle, W., von Oheimb, G., et al. (2017) Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecology and Evolution, 7, 7462-7474.
Scott, A.C. (1992) Trace fossils of plant-arthropod interactions. Short Courses in Paleontology, 5, 197-223. https://doi.org/10.1017/S247526300000235X
Shi, G.L., Leslie, A.B., Herendeen, P.S., Herrera, F., Ichinnorv, N., Takahashi, M. et al. (2016) Early Cretaceous Umkomasia from Mongolia: Implications for homology of corystosperm cupules. New Phytologist, 210, 1418-1429.
Sun, C.L., Na, Y.L., Dilcher, D.L., Wang, H.S., Li, T. and Li, Y.F. (2015) A new species of Phoenicopsis subgenus Windwardia (Florin) Samylina (Czekanowskiales) from the Middle Jurassic of Inner Mongolia, China. Acta Geologica Sinica, 89, 55-69.
Sun, G., Dilcher, D.L., Wang, H.S. and Chen, Z.D. (2011) A eudicot from the Early Cretaceous of China. Nature, 471, 625-628.
Sun, G., Dilcher, D.L., Zheng, S.L. and Zhou, Z. (1998) In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science, 282, 1692-1695.
Sun, G., Ji, Q., Dilcher, D.L., Zheng, S.L., Nixon, K.C. and Wang, X.F. (2002) Archaefructaceae, a new basal angiosperm family. Science, 296, 899-904.
Sun, G., Zheng, S.L., Dilcher, D.L., Wang, Y.D. and Mei, S.W. (2001) Early Angiosperms and their Associated Plants from Western Liaoning, China. Scientific and Technological Education Publishing House, Shanghai. (in Chinese and English). pp. 1-221.
Sun, G., Zheng, S.L. and Mei, S.M. (2000) Discovery of Liaoningocladus gen. nov. from the Lower part of Yixian Formation (Upper Jurassic) in western Liaoning, China. Acta Palaeontologica Sinica, 39 (suppl.), 200-208.
Swain, A., Maccracken, S.A., Faden, W. and Labandeira, C.C. (2021) Understanding the ecology of plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology, https://doi.org/10.1017/pab.2021.20
Taylor, T.N., Taylor, E.L. and Krings, M. (2009) Paleobotany: The Biology and Evolution of Fossil Plants. Second edition. Academic Press, London, pp. 1-1252
Turner, I.M. (1994) Sclerophylly: Primarily protective? Functional Ecology, 8, 669-675.
Varga, T., Krizsán, K. Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S. et al. (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution, 3, 668-678.
Walling, L.L. (2000) The myriad plant responses to herbivores. Journal of Plant Growth Regulation, 19, 195-216.
Wang, M., Li, L., Shih, C.K., Gao, T. and Ren, D. (2019) Hymenoptera - sawflies and wasps. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China (eds. D. Ren, C.K. Shih, T.P. Gao, Y.J. Wang & Y.Z. Yao), Wiley Blackwell, Hoboken, New Jersey. pp. 429-496.
Wang, M.M., Béthoux, O., Bradler, S., Jacques, F.M.B., Cui, Y.Y. and Ren, D. (2014) Under cover at pre-angiosperm times: A cloaked phasmatodean insect from the Early Cretaceous Jehol Biota. PLoS ONE, 9, e91290.
Wang, W., Lin, L., Xiang, X.G., Ortiz, R.C., Liu, Y., Xiang, K.L. et al. (2016) The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Scientific Reports, 6, 27259.
Wang, X. (2010) Axial nature of the cupule-bearing organ in Caytoniales. Journal of Systematics and Evolution, 48, 207-214.
Wilf, P., Escapa, I.H., Cúneo, N.R., Kooyman, R.M., Johnson, K.R. and Iglesias, A. (2014) First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany, 101, 156-179.
Wilf, P. and Labandeira, C.C. (1999) Response of plant-insect interactions to Paleocene-Eocene warming. Science, 184, 2153-2156.
Winkler, M., Hülbert, K., Mehltreter, K., Franco, J.G. and Hietz, P. (2005) Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest. Journal of Tropical Ecology, 21, 147-154.
Wong, W.O., Dilcher, D.L., Labandeira, C.C., Sun, G. and Fleischmann, A. (2015) Early Cretaceous Archaeamphora is not a carnivorous angiosperm. Frontiers in Plant Science, 6, 326.
Xavier, S.A.S., Viana, M.S.S., de Souza, E.B. and de Souza, M.J.G. (2014) Registro de oviposição em inflorescência da Formação Crato (Aptiano), Bacia do Araripe, Nordeste do Brasil. Revista de Geologia, 27, 67-75.
Xiao, L., Labandeira, C.C., Dilcher, D.L. and Ren, D. (2021) Florivory of Early Cretaceous flowers by functionally diverse insects: Implications for early angiosperm pollination. Proceedings of the Royal Society B: Biological Sciences, 288, 20210320.
Xing, L.D., Miyashita, T., Wang, D.H., Niu, K.C. and Currie, P.J. (2020) A new compsognathid theropod dinosaur from the oldest assemblage of the Jehol Biota in the Lower Cretaceous Huajiying Formation, Northeastern China. Cretaceous Research, 107, 1-12.
Xu, Q., Jin, J.H. and Labandeira, C.C. (2018) Williamson Drive: Herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counter defenses. Review of Palaeobotany and Palynology, 251, 28-72.
Xu, X.H., Li, R.Y., Dong, C., Wang, Q.J., Jin, P.H. and Sun, B.N. (2013) New Schizolepis fossils from the Early Cretaceous in Inner Mongolia, China and its phylogenetic position. Acta Geologica Sinica, 87, 1250-1263.
Yang, S., He, H. and Jin, F. (2020) The appearance and duration of the Jehol Biota: Constraint from SIMS U-Pb zircon dating for the Huajiying Formation in northern China. Proceedings of the National Academy of Sciences USA, 117, 14299-14305.
Zhang, J.F. (1992) Late Mesozoic entomofauna from Laiyang, Shandong province, China, with discussion of its palaeoecological and stratigraphical significance. Cretaceous Research, 13, 133-145.
Zhang, Q.Q., Rasnitsyn, A.P. and Zhang, H.C. (2018) Hymenoptera (wasps, bees and ants) in mid-Cretaceous Burmese amber: A review of the fauna. Proceedings of the Geologists’ Association, 129, 736-747.
Zhang, Y.J., Shih, C.K., Rasnitsyn, A., Ren, D. and Gao, T.P. (2020) A new Early Cretaceous flea from China. Acta Palaeontologica Polonica, 65, 99-107.
Zhao, M., Sun, C.L., Dilcher, D.L., Na, Y.L. and Xing, D.H. (2015) A new species of Baiera from the Early Cretaceous Jehol Biota of southeastern Jilin, China. Palaeoworld, 25, 251-262.
Zheng, S.L. and Wu, Z. (1996) Early Cretaceous flora from central Jilin and northern Liaoning, northeast China. Palaeobotanist, 45, 378-388.
Zheng, S.L., Zhang, L.J. and Gong, E.P. (2003) A discovery of Anomozamites with reproductive organs. Acta Botanica Sinica, 45, 667-672.
Zhou, Z.G., Barrett, P.M. and Hilton, J. (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature, 421, 807-814.
Zhou, Z.Y., Zheng, S.L. and Zhang, L.J. (2007) Morphology of Yimaia (Ginkgoales) from Daohugou Village, Nincheng, Inner Mongolia, China. Cretaceous Research, 28, 348-362.
Zhu, R., Pan, Y., Shi, R., Liu, Q. and Li, D. (2007) Palaeomagnetic and 40Ar/39Ar dating constraints on the age of the Jehol Biota and the duration of deposition of the Sihetun fossil-bearing lake sediments, northeast China. Cretaceous Research, 28, 171-176.

Auteurs

Lifang Xiao (L)

College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China.

Conrad C Labandeira (CC)

College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China.
Smithsonian Institution, National Museum of Natural History, Washington, DC, USA.
Department of Entomology and Bees Program, University of Maryland, College Park, MD, USA.

Dong Ren (D)

College of Life Science and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH