WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis.
Journal
Human molecular genetics
ISSN: 1460-2083
Titre abrégé: Hum Mol Genet
Pays: England
ID NLM: 9208958
Informations de publication
Date de publication:
19 05 2022
19 05 2022
Historique:
received:
13
09
2021
revised:
30
11
2021
accepted:
02
12
2021
pubmed:
8
12
2021
medline:
25
5
2022
entrez:
7
12
2021
Statut:
ppublish
Résumé
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Identifiants
pubmed: 34875064
pii: 6454974
doi: 10.1093/hmg/ddab349
pmc: PMC9122655
doi:
Substances chimiques
Receptors, G-Protein-Coupled
0
Wnt Proteins
0
Wnt11 protein, human
0
Types de publication
Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1622-1634Informations de copyright
© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Références
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Osteoporos Int. 1996;6(2):178-82
pubmed: 8704359
Sci Rep. 2018 Jun 5;8(1):8588
pubmed: 29872092
Bone Res. 2018 Aug 14;6:24
pubmed: 30131881
Oncotarget. 2015 Apr 30;6(12):10239-52
pubmed: 25823923
Calcif Tissue Int. 2022 May;110(5):546-561
pubmed: 34236445
Nat Genet. 2019 Feb;51(2):258-266
pubmed: 30598549
Sci Transl Med. 2018 Nov 7;10(466):
pubmed: 30404864
PLoS Med. 2020 Jul 2;17(7):e1003152
pubmed: 32614825
J Biol Chem. 2004 Jun 4;279(23):24659-65
pubmed: 15067007
Dev Biol. 2015 Feb 15;398(2):177-92
pubmed: 25448697
Nat Med. 2012 Feb 19;18(3):405-12
pubmed: 22344299
Nature. 2011 Jul 04;476(7360):293-7
pubmed: 21727895
PLoS One. 2012;7(5):e37137
pubmed: 22615920
Bone Rep. 2021 Aug 18;15:101118
pubmed: 34458510
Mol Genet Genomic Med. 2021 Jun;9(6):e1681
pubmed: 33939331
J Endocr Soc. 2020 Oct 07;4(12):bvaa148
pubmed: 33195954
Genomics. 1996 Dec 1;38(2):179-91
pubmed: 8954800
J Bone Miner Res. 2004 Nov;19(11):1873-81
pubmed: 15476588
J Biol Chem. 2009 May 22;284(21):14117-25
pubmed: 19213727
J Cell Biol. 2011 Mar 21;192(6):1057-72
pubmed: 21402791
Cell Mol Life Sci. 2016 Feb;73(3):567-87
pubmed: 26514730
J Clin Invest. 2006 May;116(5):1202-9
pubmed: 16670761
J Bone Miner Res. 2020 May;35(5):901-912
pubmed: 31968132
Nat Med. 2014 Nov;20(11):1279-88
pubmed: 25306233
Dev Biol. 2012 Sep 1;369(1):101-14
pubmed: 22771246
JCI Insight. 2017 Sep 7;2(17):
pubmed: 28878122
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Nat Med. 2013 Feb;19(2):179-92
pubmed: 23389618
J Biomed Mater Res A. 2020 Mar;108(3):663-674
pubmed: 31747118
Cell Death Dis. 2017 Aug 3;8(8):e2974
pubmed: 28771228
Eur J Med Genet. 2012 Oct;55(10):515-9
pubmed: 22789636
Lab Invest. 2019 Nov;99(11):1622-1635
pubmed: 31231131
J Bone Miner Res. 2021 Feb;36(2):271-282
pubmed: 33118644
Gene. 1998 Sep 28;219(1-2):101-10
pubmed: 9757009
Bone. 2019 Oct;127:324-333
pubmed: 31260814
Dev Biol. 1997 Apr 1;184(1):85-94
pubmed: 9142986
Genome Biol. 2002;3(1):REVIEWS3001
pubmed: 11806834
J Musculoskelet Neuronal Interact. 2016 Sep 07;16(3):247-55
pubmed: 27609039
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Nature. 2000 May 4;405(6782):76-81
pubmed: 10811221
J Bone Miner Metab. 2009;27(3):265-71
pubmed: 19333681
Dev Biol. 2005 Mar 1;279(1):179-92
pubmed: 15708567
N Engl J Med. 2013 May 9;368(19):1809-16
pubmed: 23656646
Acta Physiol (Oxf). 2012 Jan;204(1):52-64
pubmed: 21447091
JBMR Plus. 2017 Nov 06;2(1):12-21
pubmed: 30283887
Bone. 2018 Sep;114:62-71
pubmed: 29883787
EMBO Rep. 2011 Sep 30;12(10):1055-61
pubmed: 21909076
Dev Biol. 2015 Feb 1;398(1):80-96
pubmed: 25482987
Int J Biochem Cell Biol. 2012 Dec;44(12):2278-87
pubmed: 22982762
J Bone Miner Res. 2005 May;20(5):783-9
pubmed: 15824851
PLoS One. 2017 Aug 4;12(8):e0180711
pubmed: 28777797
J Cell Biochem. 2018 Nov;119(11):9462-9473
pubmed: 30010216
Sci Rep. 2016 Feb 10;6:21520
pubmed: 26861754
Dev Biol. 2013 Jun 1;378(1):1-12
pubmed: 23562607
J Bone Miner Res. 1995 Dec;10(12):2017-22
pubmed: 8619384
Genes Dev. 2014 Feb 15;28(4):305-16
pubmed: 24532711
Mol Cell Biol. 2002 Feb;22(4):1172-83
pubmed: 11809808