Effects of 5 Years Aerobic Exercise on Cognition in Older Adults: The Generation 100 Study: A Randomized Controlled Trial.


Journal

Sports medicine (Auckland, N.Z.)
ISSN: 1179-2035
Titre abrégé: Sports Med
Pays: New Zealand
ID NLM: 8412297

Informations de publication

Date de publication:
07 2022
Historique:
accepted: 22 11 2021
pubmed: 9 12 2021
medline: 24 6 2022
entrez: 8 12 2021
Statut: ppublish

Résumé

The objective of this study was to investigate whether a 5-year exercise intervention and change in peak oxygen uptake ([Formula: see text]) is associated with cognitive function in older adults. Nine hundred and forty-five participants (48% women, mean age at study end 78.2 ± 2.02 years) from the Generation 100 Study were randomized 2:1:1 to a control group, moderate-intensity continuous training or high-intensity interval training twice weekly for 5 years. Peak oxygen uptake was measured using ergospirometry at baseline and after 5 years. Global cognition and mild cognitive impairment (MCI) were assessed with the Montreal Cognitive Assessment scale (MoCA) after 5 years. Compared to the control group, the combined moderate-intensity continuous training plus high-intensity interval training (ExComb) group did not have significantly different cognitive scores (beta value 0.26, 95% confidence interval [CI] - 0.17, 0.69) or odds of MCI (odds ratio 0.86, 95% CI 0.66, 1.13). Men in the ExComb group had 0.80 points higher MoCA (95% CI 0.21, 1.40) and 32% lower odds of MCI compared with male controls (95% CI 0.47, 0.99), with no such findings in women. In the total sample, each 1 metabolic equivalent of task increase in [Formula: see text] corresponded to 0.46 points higher MoCA (95% CI 0.25, 0.67) and 27% lower odds of MCI (95% CI 0.63, 0.85). Compared to [Formula: see text] stable, participants whose [Formula: see text] increased did not have significantly different cognitive scores (beta value 0.24, CI - 0.68, 1.15) or odds of MCI (odds ratio 0.70, 95% CI 0.36, 1.34), whereas participants whose [Formula: see text] decreased had 0.64 points lower MoCA (95% CI - 1.15, - 0.14) and 35% higher odds of MCI (95% CI 0.98, 1.87). Overall, exercise was not significantly associated with cognition among older adults. However, maintaining or increasing [Formula: see text] appeared to benefit cognition. ClinicalTrials.gov NCT01666340.

Identifiants

pubmed: 34878637
doi: 10.1007/s40279-021-01608-5
pii: 10.1007/s40279-021-01608-5
pmc: PMC9213353
doi:

Substances chimiques

Oxygen S88TT14065

Banques de données

ClinicalTrials.gov
['NCT01666340']

Types de publication

Journal Article Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

1689-1699

Informations de copyright

© 2021. The Author(s).

Références

Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M. World Alzheimer Report 2015. The global impact of dementia An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International; 2015.
Gjøra L, Strand BH, Bergh S, Borza T, Braekhus A, Engedal K, et al. Current and future prevalence estimates of mild cognitive impairment, dementia, and its subtypes in a population-based sample of people 70 years and older in Norway: the HUNT Study. J Alzheimers Dis. 2021;79(3):1213–26. https://doi.org/10.3233/JAD-201275 .
doi: 10.3233/JAD-201275 pubmed: 33427745 pmcid: 7990439
Engeroff T, Ingmann T, Banzer W. Physical activity throughout the adult life span and domain-specific cognitive function in old age: a systematic review of cross-sectional and longitudinal data. Sports Med. 2018;48(6):1405–36. https://doi.org/10.1007/s40279-018-0920-6 .
doi: 10.1007/s40279-018-0920-6 pubmed: 29667159
Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed Res Int. 2017;2017:9016924. https://doi.org/10.1155/2017/9016924 .
doi: 10.1155/2017/9016924 pubmed: 28271072 pmcid: 5320071
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510. https://doi.org/10.1186/1471-2458-14-510 .
doi: 10.1186/1471-2458-14-510 pubmed: 24885250 pmcid: 4064273
Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85. https://doi.org/10.1016/j.yfrne.2017.04.002 .
doi: 10.1016/j.yfrne.2017.04.002 pubmed: 28442274
Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154–60. https://doi.org/10.1136/bjsports-2016-096587 .
doi: 10.1136/bjsports-2016-096587 pubmed: 28438770
Young J, Angevaren M, Rusted J, Tabet N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD005381.pub4 .
doi: 10.1002/14651858.CD005381.pub4 pubmed: 26662471 pmcid: 6823270
Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30. https://doi.org/10.1111/1467-9280.t01-1-01430 .
doi: 10.1111/1467-9280.t01-1-01430 pubmed: 12661673
Barha CK, Liu-Ambrose T. Exercise and the aging brain: considerations for sex differences. Brain Plast. 2018;4(1):53–63. https://doi.org/10.3233/BPL-180067 .
doi: 10.3233/BPL-180067 pubmed: 30564546 pmcid: 6296261
Loprinzi PD, Frith E. The role of sex in memory function: considerations and recommendations in the context of exercise. J Clin Med. 2018;7(6):132. https://doi.org/10.3390/jcm7060132 .
doi: 10.3390/jcm7060132 pmcid: 6028920
Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–99. https://doi.org/10.1161/CIR.0000000000000461 .
doi: 10.1161/CIR.0000000000000461 pubmed: 27881567
Farrell SW, Abramowitz AR, Willis BL, Barlow CE, Weiner M, Falkowski J, et al. The relationship between cardiorespiratory fitness and Montreal Cognitive Assessment Scores in older adults. Gerontology. 2018;64(5):440–5. https://doi.org/10.1159/000489336 .
doi: 10.1159/000489336 pubmed: 29843126
Edwards MK, Loprinzi PD. Combined associations of sedentary behavior and cardiorespiratory fitness on cognitive function among older adults. Int J Cardiol. 2017;229:71–4. https://doi.org/10.1016/j.ijcard.2016.11.264 .
doi: 10.1016/j.ijcard.2016.11.264 pubmed: 27884563
Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al. Ageing, fitness and neurocognitive function. Nature. 1999;400(6743):418–9. https://doi.org/10.1038/22682 .
doi: 10.1038/22682 pubmed: 10440369
Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA, et al. Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PLoS ONE. 2015;10(7): e0131647. https://doi.org/10.1371/journal.pone.0131647 .
doi: 10.1371/journal.pone.0131647 pubmed: 26158265 pmcid: 4497726
Billinger SA, Vidoni ED, Morris JK, Thyfault JP, Burns JM. Exercise test performance reveals evidence of the cardiorespiratory fitness hypothesis. J Aging Phys Act. 2017;25(2):240–6. https://doi.org/10.1123/japa.2015-0321 .
doi: 10.1123/japa.2015-0321 pubmed: 27705069
Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35(Suppl. 2):S20–8. https://doi.org/10.1016/j.neurobiolaging.2014.03.034 .
doi: 10.1016/j.neurobiolaging.2014.03.034 pubmed: 24952993
Zotcheva E, Pintzka CWS, Salvesen O, Selbaek G, Haberg AK, Ernstsen L. Associations of changes in cardiorespiratory fitness and symptoms of anxiety and depression with brain volumes: the HUNT Study. Front Behav Neurosci. 2019;13(53):53. https://doi.org/10.3389/fnbeh.2019.00053 .
doi: 10.3389/fnbeh.2019.00053 pubmed: 30971904 pmcid: 6443896
Dougherty RJ, Boots EA, Lindheimer JB, Stegner AJ, Van Riper S, Edwards DF, et al. Fitness, independent of physical activity is associated with cerebral blood flow in adults at risk for Alzheimer’s disease. Brain Imaging Behav. 2020;14(4):1154–63. https://doi.org/10.1007/s11682-019-00068-w .
doi: 10.1007/s11682-019-00068-w pubmed: 30852709 pmcid: 6733668
Johnson NF, Gold BT, Bailey AL, Clasey JL, Hakun JG, White M, et al. Cardiorespiratory fitness modifies the relationship between myocardial function and cerebral blood flow in older adults. Neuroimage. 2016;131:126–32. https://doi.org/10.1016/j.neuroimage.2015.05.063 .
doi: 10.1016/j.neuroimage.2015.05.063 pubmed: 26032886
Stensvold D, Viken H, Rognmo O, Skogvoll E, Steinshamn S, Vatten LJ, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open. 2015;5(2): e007519. https://doi.org/10.1136/bmjopen-2014-007519 .
doi: 10.1136/bmjopen-2014-007519 pubmed: 25678546 pmcid: 4330327
Helsedirektoratet. Fysisk aktivitet; Aktivitetshåndboken. 2011. Available from: https://helsedirektoratet.no/folkehelse/fysisk-aktivitet/anbefalinger/Sider/default.aspx . Accessed 29 Nov 2021.
Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
doi: 10.1249/00005768-198205000-00012
Van Walsem MR, Tyvoll H. The Montreal Cognitive Assessment (MoCA) Norwegian version. 2010. http://www.mocetest.org . Accessed 20 Nov 2020.
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x .
doi: 10.1111/j.1532-5415.2005.53221.x pubmed: 15817019
Pugh EA, Kemp EC, van Dyck CH, Mecca AP, Sharp ES, Alzheimer’s Disease Neuroimaging Initiative. Effects of normative adjustments to the Montreal Cognitive Assessment. Am J Geriatr Psychiatry. 2018;26(12):1258–67. https://doi.org/10.1016/j.jagp.2018.09.009 .
doi: 10.1016/j.jagp.2018.09.009 pubmed: 30314940 pmcid: 6779033
Rossetti HC, Lacritz LH, Cullum CM, Weiner MF. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2011;77(13):1272–5. https://doi.org/10.1212/WNL.0b013e318230208a .
doi: 10.1212/WNL.0b013e318230208a pubmed: 21917776
Davis DH, Creavin ST, Yip JL, Noel-Storr AH, Brayne C, Cullum S. Montreal Cognitive Assessment for the diagnosis of Alzheimer’s disease and other dementias. Cochrane Database Syst Rev. 2015. https://doi.org/10.1002/14651858.CD010775.pub2 .
doi: 10.1002/14651858.CD010775.pub2 pubmed: 26648251 pmcid: 6464957
Waldron-Perrine B, Axelrod BN. Determining an appropriate cutting score for indication of impairment on the Montreal Cognitive Assessment. Int J Geriatr Psychiatry. 2012;27(11):1189–94. https://doi.org/10.1002/gps.3768 .
doi: 10.1002/gps.3768 pubmed: 22228412
Borland E, Nagga K, Nilsson PM, Minthon L, Nilsson ED, Palmqvist S. The Montreal cognitive assessment: normative data from a large Swedish population-based cohort. J Alzheimers Dis. 2017;59(3):893–901. https://doi.org/10.3233/JAD-170203 .
doi: 10.3233/JAD-170203 pubmed: 28697562 pmcid: 5545909
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.
doi: 10.1176/appi.books.9780890425596
Stensvold D, Bucher Sandbakk S, Viken H, Zisko N, Reitlo LS, Nauman J, et al. Cardiorespiratory reference data in older adults: the Generation 100 Study. Med Sci Sports Exerc. 2017;49(11):2206–15. https://doi.org/10.1249/MSS.0000000000001343 .
doi: 10.1249/MSS.0000000000001343 pubmed: 28598909 pmcid: 5647117
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x .
doi: 10.1111/j.1600-0447.1983.tb09716.x pubmed: 6880820
Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A. Calculating measures of biological interaction. Eur J Epidemiol. 2005;20(7):575–9. https://doi.org/10.1007/s10654-005-7835-x .
doi: 10.1007/s10654-005-7835-x pubmed: 16119429
Sink KM, Espeland MA, Castro CM, Church T, Cohen R, Dodson JA, et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA. 2015;314(8):781–90. https://doi.org/10.1001/jama.2015.9617 .
doi: 10.1001/jama.2015.9617 pubmed: 26305648 pmcid: 4698980
Iso-Markku P, Waller K, Vuoksimaa E, Heikkila K, Rinne J, Kaprio J, et al. Midlife physical activity and cognition later in life: a prospective twin study. J Alzheimers Dis. 2016;54(4):1303–17. https://doi.org/10.3233/JAD-160377 .
doi: 10.3233/JAD-160377 pubmed: 27589524
Etgen T, Sander D, Huntgeburth U, Poppert H, Forstl H, Bickel H. Physical activity and incident cognitive impairment in elderly persons: the INVADE study. Arch Intern Med. 2010;170(2):186–93. https://doi.org/10.1001/archinternmed.2009.498 .
doi: 10.1001/archinternmed.2009.498 pubmed: 20101014
Rose G. Sick individuals and sick populations. Int J Epidemiol. 2001;30(3):427–32. https://doi.org/10.1093/ije/30.3.427 .
doi: 10.1093/ije/30.3.427 pubmed: 11416056
Stensvold D, Viken H, Steinshamn SL, Dalen H, Stoylen A, Loennechen JP, et al. Effect of exercise training for five years on all cause mortality in older adults: the Generation 100 study: randomised controlled trial. BMJ. 2020;371: m3485. https://doi.org/10.1136/bmj.m3485 .
doi: 10.1136/bmj.m3485 pubmed: 33028588 pmcid: 7539760
Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia: meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–65. https://doi.org/10.1111/j.1600-0447.2008.01326.x .
doi: 10.1111/j.1600-0447.2008.01326.x pubmed: 19236314
Wu CY, Hung SJ, Lin KC, Chen KH, Chen P, Tsay PK. Responsiveness, minimal clinically important difference, and validity of the MoCA in stroke rehabilitation. Occup Ther Int. 2019. https://doi.org/10.1155/2019/2517658 .
doi: 10.1155/2019/2517658 pubmed: 31824233 pmcid: 6899317
Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9. https://doi.org/10.1001/archneurol.2009.307 .
doi: 10.1001/archneurol.2009.307 pubmed: 20065132 pmcid: 3056436
Petersen RC, Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, et al. Prevalence of mild cognitive impairment is higher in men: the Mayo Clinic Study of Aging. Neurology. 2010;75(10):889–97. https://doi.org/10.1212/WNL.0b013e3181f11d85 .
doi: 10.1212/WNL.0b013e3181f11d85 pubmed: 20820000 pmcid: 2938972
Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF, et al. The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology. 2012;78(5):342–51. https://doi.org/10.1212/WNL.0b013e3182452862 .
doi: 10.1212/WNL.0b013e3182452862 pubmed: 22282647 pmcid: 3280046
Bloomberg M, Dugravot A, Dumurgier J, Kivimaki M, Fayosse A, Steptoe A, et al. Sex differences and the role of education in cognitive ageing: analysis of two UK-based prospective cohort studies. Lancet Public Health. 2021;6(2):e106–15. https://doi.org/10.1016/S2468-2667(20)30258-9 .
doi: 10.1016/S2468-2667(20)30258-9 pubmed: 33516287 pmcid: 8141610
McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM. Sex differences in cognitive trajectories in clinically normal older adults. Psychol Aging. 2016;31(2):166–75. https://doi.org/10.1037/pag0000070 .
doi: 10.1037/pag0000070 pubmed: 26796792 pmcid: 4783196
Catalogue of Bias Collaboration, Brassey J, Mahtan K, Spencer E, Heneghan C. Volunteer bias. 2017. http://www.catalogofbias.org/biases/volunteer-bias . Accessed 18 Nov 2020.
Kowalski K, Rhodes R, Naylor PJ, Tuokko H, MacDonald S. Direct and indirect measurement of physical activity in older adults: a systematic review of the literature. Int J Behav Nutr Phys Act. 2012;9:148. https://doi.org/10.1186/1479-5868-9-148 .
doi: 10.1186/1479-5868-9-148 pubmed: 23245612 pmcid: 3549726

Auteurs

Ekaterina Zotcheva (E)

Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Post Box 8905, 7491, Trondheim, Norway.

Asta Kristine Håberg (AK)

Norwegian National Advisory Unit for Functional MRI, Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.
Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Ulrik Wisløff (U)

Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
School of Human Movement and Nutrition Science, University of Queensland, Brisbane, QLD, Australia.

Øyvind Salvesen (Ø)

Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Post Box 8905, 7491, Trondheim, Norway.

Geir Selbæk (G)

Norwegian National Advisory Unit On Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.
Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.
Faculty of Medicine, University of Oslo, Oslo, Norway.

Dorthe Stensvold (D)

Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway.

Linda Ernstsen (L)

Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Post Box 8905, 7491, Trondheim, Norway. linda.ernstsen@ntnu.no.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH