Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
09 12 2021
Historique:
received: 19 02 2021
accepted: 12 11 2021
entrez: 10 12 2021
pubmed: 11 12 2021
medline: 20 1 2022
Statut: epublish

Résumé

Programmed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.

Identifiants

pubmed: 34887415
doi: 10.1038/s41467-021-27400-7
pii: 10.1038/s41467-021-27400-7
pmc: PMC8660796
doi:

Substances chimiques

Viral Proteins 0
virus protein 2A 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7166

Subventions

Organisme : Wellcome Trust (Wellcome)
ID : 202797/Z/16/Z
Organisme : Wellcome Trust (Wellcome)
ID : 221818/Z/20/Z
Organisme : Wellcome Trust
ID : WT096570
Pays : United Kingdom
Organisme : Wellcome Trust (Wellcome)
ID : 106207/Z/14/Z
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/D009499/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105184332
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Wellcome Trust (Wellcome)
ID : 098406/Z/12/B

Informations de copyright

© 2021. The Author(s).

Références

Firth, A. E. & Brierley, I. Non-canonical translation in RNA viruses. J. Gen. Virol. 93, 1385–1409 (2012).
pubmed: 22535777 pmcid: 3542737 doi: 10.1099/vir.0.042499-0
Atkins, J. F., Loughran, G., Bhatt, P. R., Firth, A. E. & Baranov, P. V. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res. 44, 7007–7078 (2016).
pubmed: 27436286 pmcid: 5009743
Korniy, N., Samatova, E., Anokhina, M. M., Peske, F. & Rodnina, M. V. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett. 593, 1468–1482 (2019).
pubmed: 31222875 pmcid: 6771820 doi: 10.1002/1873-3468.13478
Chen, J. et al. Dynamic pathways of -1 translational frameshifting. Nature 512, 328–332 (2014).
pubmed: 24919156 pmcid: 4472451 doi: 10.1038/nature13428
Caliskan, N., Katunin, V. I., Belardinelli, R., Peske, F. & Rodnina, M. V. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 157, 1619–1631 (2014).
pubmed: 24949973 pmcid: 7112342 doi: 10.1016/j.cell.2014.04.041
Choi, J., O’Loughlin, S., Atkins, J. F. & Puglisi, J. D. The energy landscape of -1 ribosomal frameshifting. Sci. Adv. 6, eaax6969 (2020).
pubmed: 31911945 pmcid: 6938710 doi: 10.1126/sciadv.aax6969
Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006).
pubmed: 16688178 pmcid: 7094908 doi: 10.1038/nature04735
Giedroc, D. P. & Cornish, P. V. Frameshifting RNA pseudoknots: structure and mechanism. Virus Res. 139, 193–208 (2009).
pubmed: 18621088 doi: 10.1016/j.virusres.2008.06.008
Chen, G., Chang, K. Y., Chou, M. Y., Bustamante, C. & Tinoco, I. Jr. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting. Proc. Natl Acad. Sci. USA 106, 12706–12711 (2009).
pubmed: 19628688 pmcid: 2722267 doi: 10.1073/pnas.0905046106
Halma, M. T. J., Ritchie, D. B., Cappellano, T. R., Neupane, K. & Woodside, M. T. Complex dynamics under tension in a high-efficiency frameshift stimulatory structure. Proc. Natl Acad. Sci. USA 116, 19500–19505 (2019).
pubmed: 31409714 pmcid: 6765238 doi: 10.1073/pnas.1905258116
Loughran, G., Firth, A. E. & Atkins, J. F. Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proc. Natl Acad. Sci. USA 108, E1111–E1119 (2011).
pubmed: 22025686 pmcid: 3219106 doi: 10.1073/pnas.1102932108
Napthine, S. et al. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 8, 15582 (2017).
pubmed: 28593994 pmcid: 5472766 doi: 10.1038/ncomms15582
Jackson, R. J. A detailed kinetic analysis of the in vitro synthesis and processing of encephalomyocarditis virus products. Virology 149, 114–127 (1986).
pubmed: 3004023 doi: 10.1016/0042-6822(86)90092-9
Hahn, H. & Palmenberg, A. C. Deletion mapping of the encephalomyocarditis virus primary cleavage site. J. Virol. 75, 7215–7218 (2001).
pubmed: 11435606 pmcid: 114454 doi: 10.1128/JVI.75.15.7215-7218.2001
Yang, X. et al. Structures and corresponding functions of five types of picornaviral 2A proteins. Front. Microbiol. 8, 1373 (2017).
pubmed: 28785248 pmcid: 5519566 doi: 10.3389/fmicb.2017.01373
Groppo, R. & Palmenberg, A. C. Cardiovirus 2A protein associates with 40S but not 80S ribosome subunits during infection. J. Virol. 81, 13067–13074 (2007).
pubmed: 17728235 pmcid: 2169094 doi: 10.1128/JVI.00185-07
Carocci, M. et al. Encephalomyocarditis virus 2A protein is required for viral pathogenesis and inhibition of apoptosis. J. Virol. 85, 10741–10754 (2011).
pubmed: 21849462 pmcid: 3187497 doi: 10.1128/JVI.00394-11
Merrick, W. C. eIF4F: a retrospective. J. Biol. Chem. 290, 24091–24099 (2015).
pubmed: 26324716 pmcid: 4591800 doi: 10.1074/jbc.R115.675280
Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D. Biol. Crystallogr. 60, 2256–2268 (2004).
pubmed: 15572779 doi: 10.1107/S0907444904026460
Holm, L. & Laakso, L. M. Dali server update. Nucleic Acids Res. 44, W351–W355 (2016).
pubmed: 27131377 pmcid: 4987910 doi: 10.1093/nar/gkw357
Redfern, O. C., Harrison, A., Dallman, T., Pearl, F. M. & Orengo, C. A. CATHEDRAL: a fast and effective algorithm to predict folds and domain boundaries from multidomain protein structures. PLoS Comput. Biol. 3, e232 (2007).
pubmed: 18052539 pmcid: 2098860 doi: 10.1371/journal.pcbi.0030232
Svitkin, Y. V., Hahn, H., Gingras, A. C., Palmenberg, A. C. & Sonenberg, N. Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus. J. Virol. 72, 5811–5819 (1998).
pubmed: 9621041 pmcid: 110383 doi: 10.1128/JVI.72.7.5811-5819.1998
Groppo, R., Brown, B. A. & Palmenberg, A. C. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site. Virology 410, 257–267 (2011).
pubmed: 21145089 doi: 10.1016/j.virol.2010.11.002
Petty, R. V., Basta, H. A., Bacot-Davis, V. R., Brown, B. A. & Palmenberg, A. C. Binding interactions between the encephalomyocarditis virus leader and protein 2A. J. Virol. 88, 13503–13509 (2014).
pubmed: 25210192 pmcid: 4249092 doi: 10.1128/JVI.02148-14
Siddiqui, N. et al. Structural insights into the allosteric effects of 4EBP1 on the eukaryotic translation initiation factor eIF4E. J. Mol. Biol. 415, 781–792 (2012).
pubmed: 22178476 doi: 10.1016/j.jmb.2011.12.002
Magnus, M., Boniecki, M. J., Dawson, W. & Bujnicki, J. M. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 44, W315–W319 (2016).
pubmed: 27095203 pmcid: 4987879 doi: 10.1093/nar/gkw279
Ren, J., Rastegari, B., Condon, A. & Hoos, H. H. HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005).
pubmed: 16199760 pmcid: 1370833 doi: 10.1261/rna.7284905
Chen, G., Wen, J. D. & Tinoco, I. Jr. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. RNA 13, 2175–2188 (2007).
pubmed: 17959928 pmcid: 2080604 doi: 10.1261/rna.676707
Li, P. T., Collin, D., Smith, S. B., Bustamante, C. & Tinoco, I. Jr. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophys. J. 90, 250–260 (2006).
pubmed: 16214869 doi: 10.1529/biophysj.105.068049
Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. & Wuite, G. J. Optical tweezers analysis of DNA-protein complexes. Chem. Rev. 114, 3087–3119 (2014).
pubmed: 24443844 doi: 10.1021/cr4003006
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).
pubmed: 12824337 pmcid: 169194 doi: 10.1093/nar/gkg595
Ritchie, D. B., Foster, D. A. & Woodside, M. T. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc. Natl Acad. Sci. USA 109, 16167–16172 (2012).
pubmed: 22988073 pmcid: 3479558 doi: 10.1073/pnas.1204114109
Mangeol, P. et al. Probing ribosomal protein-RNA interactions with an external force. Proc. Natl Acad. Sci. USA 108, 18272–18276 (2011).
pubmed: 22025688 pmcid: 3215066 doi: 10.1073/pnas.1107121108
Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002).
pubmed: 12052949 doi: 10.1126/science.1071152
Leger, M., Sidani, S. & Brakier-Gingras, L. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1. RNA 10, 1225–1235 (2004).
pubmed: 15247429 pmcid: 1370612 doi: 10.1261/rna.7670704
Horsfield, J. A., Wilson, D. N., Mannering, S. A., Adamski, F. M. & Tate, W. P. Prokaryotic ribosomes recode the HIV-1 gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism. Nucleic Acids Res. 23, 1487–1494 (1995).
pubmed: 7784201 pmcid: 306887 doi: 10.1093/nar/23.9.1487
James, N. R., Brown, A., Gordiyenko, Y. & Ramakrishnan, V. Translational termination without a stop codon. Science 354, 1437–1440 (2016).
pubmed: 27934701 pmcid: 5351859 doi: 10.1126/science.aai9127
Brilot, A. F., Korostelev, A. A., Ermolenko, D. N. & Grigorieff, N. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl Acad. Sci. USA 110, 20994–20999 (2013).
pubmed: 24324137 pmcid: 3876248 doi: 10.1073/pnas.1311423110
Lin, J., Gagnon, M. G., Bulkley, D. & Steitz, T. A. Conformational changes of elongation factor G on the ribosome during tRNA translocation. Cell 160, 219–227 (2015).
pubmed: 25594181 pmcid: 4297320 doi: 10.1016/j.cell.2014.11.049
Bulkley, D. et al. The antibiotics dityromycin and GE82832 bind protein S12 and block EF-G-catalyzed translocation. Cell Rep. 6, 357–365 (2014).
pubmed: 24412368 pmcid: 5331365 doi: 10.1016/j.celrep.2013.12.024
Fislage, M. et al. Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-TuH84A. Nucleic Acids Res. 46, 5861–5874 (2018).
pubmed: 29733411 pmcid: 6009598 doi: 10.1093/nar/gky346
Loveland, A. B., Demo, G. & Korostelev, A. A. Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading. Nature 584, 640–645 (2020).
Hussain, T., Llacer, J. L., Wimberly, B. T., Kieft, J. S. & Ramakrishnan, V. Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell 167, 133–144.e13 (2016).
pubmed: 27662086 pmcid: 5037330 doi: 10.1016/j.cell.2016.08.074
Napthine, S., Bell, S., Hill, C. H., Brierley, I. & Firth, A. E. Characterization of the stimulators of protein-directed ribosomal frameshifting in Theiler’s murine encephalomyelitis virus. Nucleic Acids Res. 47, 8207–8223 (2019).
pubmed: 31180502 pmcid: 6735917 doi: 10.1093/nar/gkz503
Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).
pubmed: 18327250 pmcid: 2556548 doi: 10.1038/nature06716
Kim, H. K. et al. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. Proc. Natl Acad. Sci. USA 111, 5538–5543 (2014).
pubmed: 24706807 pmcid: 3992627 doi: 10.1073/pnas.1403457111
Qin, P., Yu, D., Zuo, X. & Cornish, P. V. Structured mRNA induces the ribosome into a hyper-rotated state. EMBO Rep. 15, 185–190 (2014).
pubmed: 24401932 pmcid: 3989864 doi: 10.1002/embr.201337762
Bao, C. et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. eLife 9, e55799 (2020).
Yang, L. et al. Single-molecule mechanical folding and unfolding of RNA hairpins: effects of single A-U to A.C pair substitutions and single proton binding and implications for mRNA structure-induced -1 ribosomal frameshifting. J. Am. Chem. Soc. 140, 8172–8184 (2018).
pubmed: 29884019 doi: 10.1021/jacs.8b02970
Zhong, Z. et al. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation. Sci. Rep. 6, 39549 (2016).
pubmed: 28000744 pmcid: 5175198 doi: 10.1038/srep39549
Bock, L. V. et al. Thermodynamic control of -1 programmed ribosomal frameshifting. Nat. Commun. 10, 4598 (2019).
pubmed: 31601802 pmcid: 6787027 doi: 10.1038/s41467-019-12648-x
Peng, B. Z. et al. Active role of elongation factor G in maintaining the mRNA reading frame during translation. Sci. Adv. 5, eaax8030 (2019).
pubmed: 31903418 pmcid: 6924986 doi: 10.1126/sciadv.aax8030
Neidel, S. et al. Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. J. Biol. Chem. 290, 5991–6002 (2015).
pubmed: 25605733 pmcid: 4358236 doi: 10.1074/jbc.M114.624650
Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Cryst. 43, 186–190 (2009).
doi: 10.1107/S0021889809045701
Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D. Biol. Crystallogr. 69, 1204–1214 (2013).
pubmed: 23793146 pmcid: 3689523 doi: 10.1107/S0907444913000061
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).
pubmed: 22628654 pmcid: 3457925 doi: 10.1126/science.1218231
Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).
pubmed: 17172768
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
pubmed: 18156677 doi: 10.1107/S0108767307043930
Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D. Biol. Crystallogr. 52, 30–42 (1996).
pubmed: 15299723 doi: 10.1107/S0907444995008754
Perrakis, A., Harkiolaki, M., Wilson, K. S. & Lamzin, V. S. ARP/wARP and molecular replacement. Acta Crystallogr. D. Biol. Crystallogr. 57, 1445–1450 (2001).
pubmed: 11567158 doi: 10.1107/S0907444901014007
McCoy, A. J. et al. Phaser crystallographic software. J. Appl Crystallogr 40, 658–674 (2007).
pubmed: 19461840 pmcid: 2483472 doi: 10.1107/S0021889807021206
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta. Crystallogr. D. Struct. Biol. 74, 519–530 (2018).
pubmed: 29872003 pmcid: 6096486 doi: 10.1107/S2059798318002425
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).
pubmed: 15215472 pmcid: 441519 doi: 10.1093/nar/gkh381
Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).
pubmed: 11517324 pmcid: 56910 doi: 10.1073/pnas.181342398
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Stephenson, W., Wan, G., Tenenbaum, S. A. & Li, P. T. Nanomanipulation of single RNA molecules by optical tweezers. J. Vis. Exp. 51542 (2014).
Mukhortava, A. et al. Structural heterogeneity of attC integron recombination sites revealed by optical tweezers. Nucleic Acids Res. 47, 1861–1870 (2019).
pubmed: 30566629 doi: 10.1093/nar/gky1258
Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).
pubmed: 9138579 pmcid: 1184516 doi: 10.1016/S0006-3495(97)78780-0
Odijk, T. Stiff chains and filaments under tension. Macromolecules 28, 7016–7018 (1995).
doi: 10.1021/ma00124a044
Zhang, C. et al. The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys. J. 116, 196–204 (2019).
pubmed: 30635125 doi: 10.1016/j.bpj.2018.12.005
Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).
pubmed: 8628994 doi: 10.1126/science.271.5250.795
McCauley, M. J., Rouzina, I., Li, J., Nunez, M. E. & Williams, M. C. Significant differences in RNA structure destabilization by HIV-1 GagDp6 and NCp7 proteins. Viruses 12, 484 (2020).
Gore, J., Ritort, F. & Bustamante, C. Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl Acad. Sci. USA 100, 12564–12569 (2003).
pubmed: 14528008 pmcid: 240657 doi: 10.1073/pnas.1635159100
Bellaousov, S., Reuter, J. S., Seetin, M. G. & Mathews, D. H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 41, W471–W474 (2013).
pubmed: 23620284 pmcid: 3692136 doi: 10.1093/nar/gkt290
Pisarev, A. V., Unbehaun, A., Hellen, C. U. & Pestova, T. V. Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol. 430, 147–177 (2007).
pubmed: 17913638 doi: 10.1016/S0076-6879(07)30007-4
Fixsen, S. M. & Howard, M. T. Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins. J. Mol. Biol. 399, 385–396 (2010).
pubmed: 20417644 pmcid: 2916059 doi: 10.1016/j.jmb.2010.04.033
Powell, M. L., Brown, T. D. & Brierley, I. Translational termination-re-initiation in viral systems. Biochem. Soc. Trans. 36, 717–722 (2008).
pubmed: 18631147 doi: 10.1042/BST0360717
Milon, P. et al. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria. Methods Enzymol. 430, 1–30 (2007).
pubmed: 17913632 doi: 10.1016/S0076-6879(07)30001-3
Rodnina, M. V., Semenkov, Y. P. & Wintermeyer, W. Purification of fMet-tRNA(fMet) by fast protein liquid chromatography. Anal. Biochem. 219, 380–381 (1994).
pubmed: 8080098 doi: 10.1006/abio.1994.1282
Kothe, U., Paleskava, A., Konevega, A. L. & Rodnina, M. V. Single-step purification of specific tRNAs by hydrophobic tagging. Anal. Biochem. 356, 148–150 (2006).
pubmed: 16750812 doi: 10.1016/j.ab.2006.04.038
Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).
pubmed: 2199796 doi: 10.1016/0076-6879(90)85008-C
Passmore, L. A. & Russo, C. J. Specimen preparation for high-resolution cryo-EM. Methods Enzymol. 579, 51–86 (2016).
pubmed: 27572723 pmcid: 5140023 doi: 10.1016/bs.mie.2016.04.011
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084

Auteurs

Chris H Hill (CH)

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. chris.hill@york.ac.uk.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK. chris.hill@york.ac.uk.
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK. chris.hill@york.ac.uk.

Lukas Pekarek (L)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.

Sawsan Napthine (S)

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.

Anuja Kibe (A)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.

Andrew E Firth (AE)

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.

Stephen C Graham (SC)

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. scg34@cam.ac.uk.

Neva Caliskan (N)

Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. neva.caliskan@helmholtz-hiri.de.
Medical Faculty, Julius-Maximilians University Würzburg, Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany. neva.caliskan@helmholtz-hiri.de.

Ian Brierley (I)

Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. ib103@cam.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH