Lyl-1 regulates primitive macrophages and microglia development.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
09 12 2021
09 12 2021
Historique:
received:
07
05
2021
accepted:
10
11
2021
entrez:
10
12
2021
pubmed:
11
12
2021
medline:
11
1
2022
Statut:
epublish
Résumé
During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/"early EMP" and transient-definitive/"late EMP" waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.
Identifiants
pubmed: 34887504
doi: 10.1038/s42003-021-02886-5
pii: 10.1038/s42003-021-02886-5
pmc: PMC8660792
doi:
Substances chimiques
Basic Helix-Loop-Helix Transcription Factors
0
Lyl1 protein, mouse
0
Neoplasm Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1382Informations de copyright
© 2021. The Author(s).
Références
Pina, C. & Enver, T. Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 26, 6750–6765 (2007).
pubmed: 17934483
doi: 10.1038/sj.onc.1210759
Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).
pubmed: 20887958
doi: 10.1016/j.stem.2010.07.016
Curtis, D. J., Salmon, J. M. & Pimanda, J. E. Concise review: blood relatives: formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1. Stem Cells 30, 1053–1058 (2012).
pubmed: 22593015
doi: 10.1002/stem.1093
Porcher, C., Chagraoui, H. & Kristiansen, M. S. SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 129, 2051–2060 (2017).
pubmed: 28179281
doi: 10.1182/blood-2016-12-754051
Capron, C. et al. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 107, 4678–4686 (2006).
pubmed: 16514064
doi: 10.1182/blood-2005-08-3145
McGrath, K. E., Frame, J. M. & Palis, J. Early hematopoiesis and macrophage development. Semin. Immunol. 27, 379–387 (2015).
pubmed: 27021646
doi: 10.1016/j.smim.2016.03.013
Palis, J. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590, 3965–3974 (2016).
pubmed: 27790707
doi: 10.1002/1873-3468.12459
Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu Rev. Immunol. 25, 745–785 (2007).
pubmed: 17201678
doi: 10.1146/annurev.immunol.25.022106.141538
Kieusseian, A., Brunet de la Grange, P., Burlen-Defranoux, O., Godin, I. & Cumano, A. Immature hematopoietic stem cells undergo maturation in the fetal liver. Development 139, 3521–3530 (2012).
pubmed: 22899849
doi: 10.1242/dev.079210
Palis, J., Robertson, S., Kennedy, M., Wall, C. & Keller, G. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073–5084 (1999).
pubmed: 10529424
doi: 10.1242/dev.126.22.5073
Bertrand, J. Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004–3011 (2005).
pubmed: 16020514
doi: 10.1182/blood-2005-02-0461
Tober, J. et al. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood 109, 1433–1441 (2007).
pubmed: 17062726
pmcid: 1794060
doi: 10.1182/blood-2006-06-031898
Sumner, R., Crawford, A., Mucenski, M. & Frampton, J. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19, 3335–3342 (2000).
pubmed: 10918590
doi: 10.1038/sj.onc.1203660
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).
pubmed: 22442384
doi: 10.1126/science.1219179
Hoeffel, G. & Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol. 330, 5–15 (2018).
pubmed: 29475558
doi: 10.1016/j.cellimm.2018.01.001
Utz, S. G. et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181, 557–573 e518 (2020).
pubmed: 32259484
doi: 10.1016/j.cell.2020.03.021
Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).
pubmed: 26982352
doi: 10.1016/j.immuni.2016.02.024
Mass, E. Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int Immunol. 30, 493–501 (2018).
pubmed: 29986024
doi: 10.1093/intimm/dxy044
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).
pubmed: 20966214
pmcid: 3719181
doi: 10.1126/science.1194637
Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).
pubmed: 25470051
doi: 10.1038/nature13989
Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).
pubmed: 23334579
doi: 10.1038/nn.3318
Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145–152 (1999).
pubmed: 10567732
doi: 10.1016/S0165-3806(99)00113-3
Wu, Y. & Hirschi, K. K. Tissue-resident macrophage development and function. Front. Cell Dev. Biol. 8, 617879 (2021).
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).
pubmed: 11784010
doi: 10.1006/dbio.2001.0393
Ferrero, G. et al. Embryonic microglia derive from primitive macrophages and are replaced by cmyb-dependent definitive microglia in zebrafish. Cell Rep. 24, 130–141 (2018).
pubmed: 29972775
doi: 10.1016/j.celrep.2018.05.066
Wittamer, V. & Bertrand, J. Y. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system? Cell Mol. Life Sci. 77, 4081–4091 (2020).
Azzoni, E. et al. Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep. 19, e45477 (2018).
Espin-Palazon, R. et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell 159, 1070–1085 (2014).
pubmed: 25416946
pmcid: 4243083
doi: 10.1016/j.cell.2014.10.031
Giroux, S. et al. lyl-1 and tal-1/scl, two genes encoding closely related bHLH transcription factors, display highly overlapping expression patterns during cardiovascular and hematopoietic ontogeny. Gene Expr. Patterns 7, 215–226 (2007).
pubmed: 17112790
doi: 10.1016/j.modgep.2006.10.004
Cumano, A., Dieterlen-Lievre, F. & Godin, I. Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86, 907–916 (1996).
pubmed: 8808626
doi: 10.1016/S0092-8674(00)80166-X
Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P. & Godin, I. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15, 477–485 (2001).
pubmed: 11567637
doi: 10.1016/S1074-7613(01)00190-X
Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).
pubmed: 25902481
pmcid: 4545768
doi: 10.1016/j.immuni.2015.03.011
Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).
Balounova, J. et al. Toll-like receptor 2 expression on c-kit(+) cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nat. Commun. 10, 5176 (2019).
pubmed: 31729371
pmcid: 6858454
doi: 10.1038/s41467-019-13150-0
Espin-Palazon, R., Weijts, B., Mulero, V. & Traver, D. Proinflammatory signals as fuel for the fire of hematopoietic stem cell emergence. Trends Cell Biol. 28, 58–66 (2018).
pubmed: 28882414
doi: 10.1016/j.tcb.2017.08.003
Mariani, S. A. et al. Pro-inflammatory aorta-associated macrophages are involved in embryonic development of hematopoietic stem cells. Immunity 50, 1439–1452.e5 (2019).
Palpant, N. J. et al. Chromatin and transcriptional analysis of mesoderm progenitor cells identifies HOPX as a regulator of primitive hematopoiesis. Cell Rep. 20, 1597–1608 (2017).
pubmed: 28813672
pmcid: 5576510
doi: 10.1016/j.celrep.2017.07.067
Chiu, S. K. et al. Shared roles for Scl and Lyl1 in murine platelet production and function. Blood 134, 826–835 (2019).
pubmed: 31300405
doi: 10.1182/blood.2019896175
McCormack, M. P. et al. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood 122, 2093–2103 (2013).
pubmed: 23926305
doi: 10.1182/blood-2012-09-458570
Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).
pubmed: 24439267
pmcid: 3923301
doi: 10.1016/j.immuni.2013.11.019
Leid, J. et al. Primitive embryonic macrophages are required for coronary development and maturation. Circulation Res. 118, 1498 (2016).
pubmed: 27009605
doi: 10.1161/CIRCRESAHA.115.308270
Pirot, N. et al. LYL1 activity is required for the maturation of newly formed blood vessels in adulthood. Blood 115, 5270–5279 (2010).
pubmed: 20418284
doi: 10.1182/blood-2010-03-275651
Hagemeyer, N. et al. Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J. 35, 1730–1744 (2016).
pubmed: 27412700
pmcid: 5010043
doi: 10.15252/embj.201693801
Ferrier, R. et al. Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene 18, 995–1005 (1999).
pubmed: 10023675
doi: 10.1038/sj.onc.1202374
Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79812 (2016). Data sets.
pubmed: 27338705
doi: 10.1126/science.aad8670
Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).
pubmed: 27135602
pmcid: 4968048
doi: 10.1038/ni.3423
Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).
pubmed: 25480296
pmcid: 4437213
doi: 10.1016/j.cell.2014.11.018
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
pubmed: 25186741
pmcid: 4152602
doi: 10.1523/JNEUROSCI.1860-14.2014
Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
pubmed: 25700174
doi: 10.1126/science.aaa1934
Wehrspaun, C. C., Haerty, W. & Ponting, C. P. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol. Aging 36, 2443 e2449–2443 e2420 (2015).
doi: 10.1016/j.neurobiolaging.2015.04.008
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. 113, E1738–E1746 (2016).
pubmed: 26884166
pmcid: 4812770
doi: 10.1073/pnas.1525528113
Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).
pubmed: 24487234
doi: 10.1038/nn.3641
Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).
pubmed: 21778362
doi: 10.1126/science.1202529
Antony, J. M., Paquin, A., Nutt, S. L., Kaplan, D. R. & Miller, F. D. Endogenous microglia regulate development of embryonic cortical precursor cells. J. Neurosci. Res. 89, 286–298 (2011).
pubmed: 21259316
doi: 10.1002/jnr.22533
Ueno, M. et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16, 543–551 (2013).
pubmed: 23525041
doi: 10.1038/nn.3358
Soucie, E. L. et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510 (2016).
Crotti, A. & Ransohoff, R. M. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity 44, 505–515 (2016).
pubmed: 26982357
doi: 10.1016/j.immuni.2016.02.013
Bisht, K., Sharma, K. & Tremblay, M.-È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress 9, 9–21 (2018).
pubmed: 29992181
pmcid: 6035903
doi: 10.1016/j.ynstr.2018.05.003
Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018).
pubmed: 29346778
doi: 10.1016/j.celrep.2017.12.066
Colangelo, V. et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473 (2002).
pubmed: 12391607
doi: 10.1002/jnr.10351
Thomas, D. M., Francescutti-Verbeem, D. M. & Kuhn, D. M. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. Faseb J. 20, 515–517 (2006).
pubmed: 16384912
doi: 10.1096/fj.05-4873fje
Nimmakayalu, M. et al. Apparent germline mosaicism for a novel 19p13.13 deletion disrupting NFIX and CACNA1A. Am. J. Med. Genet. A 161A, 1105–1109 (2013).
pubmed: 23495138
doi: 10.1002/ajmg.a.35790
Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).
pubmed: 10805752
pmcid: 85780
doi: 10.1128/MCB.20.11.4106-4114.2000
Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993).
pubmed: 8269852
doi: 10.1242/dev.118.4.1255
Bertrand, J. Y., Giroux, S., Cumano, A. & Godin, I. Hematopoietic stem cell development during mouse embryogenesis. Methods Mol. Med. 105, 273–288 (2005).
pubmed: 15492401
Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10, 1544–1553 (2007).
pubmed: 18026096
doi: 10.1038/nn2015
Fiering, S. N. et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12, 291–301 (1991).
pubmed: 1905992
doi: 10.1002/cyto.990120402
Guo, W. & Wu, H. Detection of LacZ expression by FACS-Gal analysis. Nat. Protoc. Exch. (2008).
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
pubmed: 27312411
pmcid: 5039924
doi: 10.1093/bioinformatics/btw354
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–d773 (2019).
pubmed: 30357393
doi: 10.1093/nar/gky955
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Krämer, A., Green, J., Pollard, J. Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30, 523–530 (2014).
pubmed: 24336805
doi: 10.1093/bioinformatics/btt703
Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).
pubmed: 12808457
doi: 10.1038/ng1180
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102