Parvovirus B19 induces cellular senescence in human dermal fibroblasts: putative role in systemic sclerosis-associated fibrosis.
SSc
cellular senescence
fibrosis
normal human dermal fibroblasts
parvovirus B19
Journal
Rheumatology (Oxford, England)
ISSN: 1462-0332
Titre abrégé: Rheumatology (Oxford)
Pays: England
ID NLM: 100883501
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
received:
21
07
2021
revised:
29
11
2021
pubmed:
11
12
2021
medline:
9
9
2022
entrez:
10
12
2021
Statut:
ppublish
Résumé
Emerging evidence demonstrates that excessive accumulation of senescent cells is associated with some chronic diseases and suggests a pathogenic role of cellular senescence in fibrotic processes, such as that occurring in ageing or in SSc. Recently we demonstrated that parvovirus B19 (B19V) activates normal human dermal fibroblasts and induces expression of different profibrotic/pro-inflammatory genes. This observation prompted us to investigate whether it is also able to induce fibroblast senescence as a potential pathogenetic mechanism in B19V-induced fibrosis. Primary cultures of fibroblasts were infected with B19V and analysed for the acquisition of senescence markers, such as morphological modifications, senescence-associated β-galactosidase (SA-β-gal) activity, DNA damage response and expression of senescence-associated secretory phenotype (SASP)-related factors. We demonstrated that B19V-infected fibroblasts develop typical senescence features such as enlarged and flat-shaped morphology and SA-β-gal activity similar to that observed in SSc skin fibroblasts. They also developed an SASP-like phenotype characterized by mRNA expression and release of some pro-inflammatory cytokines, along with activation of the transcription factor nuclear factor κB. Moreover, we observed B19V-induced DNA damage with the comet assay: a subpopulation of fibroblasts from B19V-infected cultures showed a significantly higher level of DNA strand breaks and oxidative damage compared with mock-infected cells. An increased level and nuclear localization of γH2AX, a hallmark of DNA damage response, were also found. B19V-induced senescence and production of SASP-like factors in normal dermal fibroblasts could represent a new pathogenic mechanism of non-productive B19V infection, which may have a role in the fibrotic process.
Identifiants
pubmed: 34888638
pii: 6458339
doi: 10.1093/rheumatology/keab904
pmc: PMC9434300
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3864-3874Commentaires et corrections
Type : ErratumIn
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Rheumatology.
Références
Front Cell Dev Biol. 2020 Nov 25;8:593283
pubmed: 33324646
Rev Med Virol. 2003 Jan-Feb;13(1):21-37
pubmed: 12516060
J Clin Pathol. 2016 Apr;69(4):279-91
pubmed: 26644521
Environ Mol Mutagen. 2010 Oct-Dec;51(8-9):879-89
pubmed: 20818630
Arthritis Rheum. 2002 Aug;46(8):2262-3; author reply 2263-4
pubmed: 12209545
J Virol. 2002 Jun;76(11):5395-403
pubmed: 11991968
J Invest Dermatol. 2014 Sep;134(9):2321-2330
pubmed: 24496236
Curr Rheumatol Rep. 2018 Jan 26;20(1):3
pubmed: 29374361
Int J Mol Sci. 2017 Oct 30;18(11):
pubmed: 29084133
PLoS One. 2015 May 29;10(5):e0127511
pubmed: 26024529
Mol Biol Cell. 2006 Apr;17(4):1583-92
pubmed: 16436515
Cell Cycle. 2013 Nov 15;12(22):3537-46
pubmed: 24091627
Annu Rev Pathol. 2010;5:99-118
pubmed: 20078217
Cell. 2019 Oct 31;179(4):813-827
pubmed: 31675495
Nature. 2006 Nov 30;444(7119):638-42
pubmed: 17136094
EMBO Rep. 2021 Apr 7;22(4):e52243
pubmed: 33734564
J Pathol. 2006 Oct;210(2):240-8
pubmed: 16917801
J Virol. 2011 Aug;85(16):8046-55
pubmed: 21680529
J Invest Dermatol. 2019 Oct;139(10):2125-2133.e1
pubmed: 30978354
Blood. 1987 Aug;70(2):384-91
pubmed: 3038211
J Virol. 2003 Mar;77(5):2915-21
pubmed: 12584315
J Virol. 1998 Apr;72(4):3018-28
pubmed: 9525624
Annu Rev Pathol. 2011;6:509-37
pubmed: 21090968
J Virol. 2016 Aug 12;90(17):7880-93
pubmed: 27334596
Arthritis Rheumatol. 2014 Aug;66(8):1967-78
pubmed: 24838199
J Virol. 2004 Jul;78(14):7775-83
pubmed: 15220451
Hum Pathol. 2001 Mar;32(3):327-32
pubmed: 11274643
Nat Rev Rheumatol. 2011 Oct 25;8(1):42-54
pubmed: 22025123
Virulence. 2016 May 18;7(4):427-42
pubmed: 26809688
Annu Rev Virol. 2014 Nov;1(1):605-25
pubmed: 26958736
Aging Cell. 2015 Aug;14(4):534-46
pubmed: 25847297
Int J Med Sci. 2011 Jan 15;8(2):88-96
pubmed: 21278893
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7450-3
pubmed: 16651522
Mutat Res Genet Toxicol Environ Mutagen. 2019 Jul;843:11-17
pubmed: 31421731
Oncogene. 2013 Aug 15;32(33):3789-97
pubmed: 23208502
Virus Res. 2014 Sep 22;190:8-16
pubmed: 24998884
J Cutan Pathol. 2004 Jan;31(1):43-50
pubmed: 14675284
J Gerontol A Biol Sci Med Sci. 2019 Apr 23;74(5):625-633
pubmed: 30084946
Virus Res. 2005 Dec;114(1-2):1-5
pubmed: 15990190
Nature. 2006 Nov 30;444(7119):633-7
pubmed: 17136093
Rheumatology (Oxford). 2020 Nov 1;59(11):3526-3532
pubmed: 32556240
Clin Rheumatol. 2013 Oct;32(10):1533-9
pubmed: 23812618
Clin Exp Rheumatol. 1999 Nov-Dec;17(6):718-20
pubmed: 10609071
N Engl J Med. 2004 Feb 5;350(6):586-97
pubmed: 14762186
J Virol. 1967 Dec;1(6):1174-85
pubmed: 5621489
J Rheumatol. 2011 Jul;38(7):1317-25
pubmed: 21685299
Nat Cell Biol. 2013 Aug;15(8):978-90
pubmed: 23770676
Int J Med Sci. 2014 Apr 04;11(6):538-44
pubmed: 24782642