Recurrence-specific supervised graph clustering for subtyping Hodgkin Lymphoma radiomic phenotypes.
Journal
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
ISSN: 2694-0604
Titre abrégé: Annu Int Conf IEEE Eng Med Biol Soc
Pays: United States
ID NLM: 101763872
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
entrez:
11
12
2021
pubmed:
12
12
2021
medline:
30
12
2021
Statut:
ppublish
Résumé
The prediction at baseline of patients at high risk for therapy failure or recurrence would significantly impact on Hodgkin Lymphoma patients treatment, informing clinical practice. Current literature is extensively searching insights in radiomics, a promising framework for high-throughput imaging feature extraction, to derive biomarkers and quantitative prognostic factors from images. However, existing studies are limited by intrinsic radiomic limitations, high dimensionality among others. We propose an exhaustive patient representation and a recurrence-specific multi-view supervised clustering algorithm for estimating patient-to-patient similarity graph and learning recurrence probability. We stratified patients in two risk classes and characterize each group in terms of clinical variables.
Identifiants
pubmed: 34891715
doi: 10.1109/EMBC46164.2021.9629625
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM