The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or onco-suppressor microRNA?
cancer
chemotherapy
lncRNA
miR-1290
natural product
radiotherapy
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
revised:
20
07
2021
received:
07
05
2021
accepted:
24
11
2021
pubmed:
14
12
2021
medline:
14
4
2022
entrez:
13
12
2021
Statut:
ppublish
Résumé
Cancer is one of the leading causes of death in humans because of the lack of early diagnosis, distant metastases, and the resistance to adjuvant therapies, including chemotherapy and radiotherapy. In addition to playing an essential role in tumor progression and development, microRNAs (miRNAs) can be used as a robust biomarker in the early detection of cancer. MiR-1290 was discovered for the first time in human embryonic stem cells, and under typical physiological situations, plays an essential role in neuronal differentiation and neural stem cell proliferation. Its coding sequence is located at the 1p36.13 regions in the first intron of the aldehyde dehydrogenase 4 gene member A1. miR-1290 is out of control in many cancers such as breast cancer, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, lung cancer, pancreatic cancer, and plays a vital role in their development. Therefore, it is suggested that miR-1290 can be considered as a potential diagnostic and therapeutic target in many cancers. In addition to the importance of miR-1290 in the noninvasive diagnosis of various cancers, this systematic review study discussed the role of miR-1290 in altering the expression of different genes involved in cancer development and chemo-radiation resistance. Moreover, it considered the regulatory effect of natural products on miR-1290 expression and the interaction of lncRNAs by miR-1290.
Substances chimiques
MIRN1290 microRNA, human
0
MicroRNAs
0
RNA, Long Noncoding
0
Types de publication
Journal Article
Review
Systematic Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
506-531Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Wiffen PJ, Wee B, Derry S, Bell RF, Moore RA. Opioids for cancer pain - an overview of Cochrane reviews. Cochrane Database Syst Rev. 2017;7(7):Cd012592. doi:10.1002/14651858.CD012592.pub2
Pan-cancer analysis of whole genomes. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82-93. doi:10.1038/s41586-020-1969-6
Wardle J, Robb K, Vernon S, Waller J. Screening for prevention and early diagnosis of cancer. Am Psychol. 2015;70(2):119-133. doi:10.1037/a0037357
Gheidari F, Arefian E, Adegani FJ, et al. miR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. Eur J Pharmacol. 2021;906:174273. doi:10.1016/j.ejphar.2021.174273
Kalhori MR, Saadatpour F, Arefian E, et al. The potential therapeutic effect of RNA interference and natural products on COVID-19: A review of the coronaviruses infection. Front Pharmacol. 2021;12:116. doi:10.3389/fphar.2021.616993
Thurnherr T, Mah WC, Lei Z, Jin Y, Rozen SG, Lee CG. Differentially expressed miRNAs in hepatocellular carcinoma target genes in the genetic information processing and metabolism pathways. Sci Rep. 2016;6:20065. doi:10.1038/srep20065
Morin RD, O'Connor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610-621. doi:10.1101/gr.7179508
Yelamanchili SV, Morsey B, Harrison EB, et al. The evolutionary young miR-1290 favors mitotic exit and differentiation of human neural progenitors through altering the cell cycle proteins. Cell Death Dis. 2014;5(1):e982.
Li Z, Zhu X, Huang S. Extracellular vesicle long non-coding RNAs and circular RNAs: Biology, functions and applications in cancer. Cancer Lett. 2020;489:111-120. doi:10.1016/j.canlet.2020.06.006
Kobayashi M, Sawada K, Nakamura K, et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. doi:10.1186/s13048-018-0458-0
Ng KT, Lo CM, Wong N, et al. Early-phase circulating miRNAs predict tumor recurrence and survival of hepatocellular carcinoma patients after liver transplantation. Oncotarget. 2016;7(15):19824-19839. doi:10.18632/oncotarget.7627
Zhou J, Guo H, Yang Y, Zhang Y, Liu H. A meta-analysis on the prognosis of exosomal miRNAs in all solid tumor patients. Medicine (Baltimore). 2019;98(16):e15335. doi:10.1097/md.0000000000015335
Mikkelsen LH. Molecular biology in conjunctival melanoma and the relationship to mucosal melanoma. Acta Ophthalmol. 2020;98(Suppl 115):1-27. doi:10.1111/aos.14536
Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie. 2011;93(11):1897-1904. doi:10.1016/j.biochi.2011.06.017
Amourda C, Saunders TE. The mirtron miR-1010 functions in concert with its host gene SKIP to balance elevation of nAcRβ2. Sci Rep. 2020;10(1):1688. doi:10.1038/s41598-020-58655-7
Rishabh K, Khadilkar S, Kumar A, Kalra I, Kumar AP, Kunnumakkara AB. MicroRNAs as modulators of oral tumorigenesis-a focused review. Int J Mol Sci. 2021;22(5), doi:10.3390/ijms22052561
Liu, J, Ren L, Li S, et al. The biology, function, and applications of exosomes in cancer. Acta Pharm Sin B. 2021;11:2783-2797. doi:10.1016/j.apsb.2021.01.001
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. doi:10.1038/ncb1596
Zen K, Zhang CY. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev. 2012;32(2):326-348. doi:10.1002/med.20215
Allegra A, Alonci A, Campo S, et al. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41(6):1897-1912. doi:10.3892/ijo.2012.1647
Avigad S, Verly IR, Lebel A, et al. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2016;55(4):328-339. doi:10.1002/gcc.22334
Hamam R, Ali AM, Alsaleh KA, et al. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep. 2016;6:25997. doi:10.1038/srep25997
Li S, Zhang M, Xu F, Wang Y, Leng D. Detection significance of miR-3662, miR-146a, and miR-1290 in serum exosomes of breast cancer patients. J Cancer Res Ther. 2021;17(3):749-755. doi:10.4103/jcrt.jcrt_280_21
Nagamitsu Y, Nishi H, Sasaki T, Takaesu Y, Terauchi F, Isaka K. Profiling analysis of circulating microRNA expression in cervical cancer. Mol Clin Oncol. 2016;5(1):189-194. doi:10.3892/mco.2016.875
Imaoka H, Toiyama Y, Fujikawa H, et al. Circulating microRNA-1290 as a novel diagnostic and prognostic biomarker in human colorectal cancer. Ann Oncol. 2016;27(10):1879-1886. doi:10.1093/annonc/mdw279
Li H, Zhang H, Lu G, et al. Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol Lett. 2016;12(4):2329-2336. doi:10.3892/ol.2016.5027
Liu J, Li H, Sun L, et al. Epigenetic alternations of MicroRNAs and DNA methylation contribute to liver metastasis of colorectal cancer. Dig Dis Sci. 2019;64(6):1523-1534. doi:10.1007/s10620-018-5424-6
Shi, Y, Zhuang Y, Zhang J, Chen M, Wu S. Four circulating exosomal miRNAs as novel potential biomarkers for the early diagnosis of human colorectal cancer. Tissue Cell. 2021;70:101499. doi:10.1016/j.tice.2021.101499
Handa T, Kuroha M, Nagai H, et al. Liquid biopsy for colorectal adenoma: is the exosomal miRNA derived from organoid a potential diagnostic biomarker? Clin Transl Gastroenterol. 2021;12(5):e00356. doi:10.14309/ctg.0000000000000356
Geusau A, Borik-Heil L, Skalicky S, et al. Dysregulation of tissue and serum microRNAs in organ transplant recipients with cutaneous squamous cell carcinomas. Health Sci Rep. 2020;3(4):e205. doi:10.1002/hsr2.205
Sun H, Wang L, Zhao Q, Dai J. Diagnostic and prognostic value of serum miRNA-1290 in human esophageal squamous cell carcinoma. Cancer Biomark. 2019;25(4):381-387. doi:10.3233/cbm-190007
Wang, Q, Wang G, Niu L, et al. Exosomal miR-1290 promotes angiogenesis of hepatocellular carcinoma via targeting SMEK1. J Oncol. 2021;2021:6617700. doi:10.1155/2021/6617700
Sun X, Song Y, Tai X, Liu B, Ji W. MicroRNA expression and its detection in human supraglottic laryngeal squamous cell carcinoma. Biomed Rep. 2013;1(5):743-746. doi:10.3892/br.2013.143
Huang Q, Yang J, Zheng J, Hsueh C, Guo Y, Zhou L. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing. Oncol Rep. 2018;40(5):2584-2594. doi:10.3892/or.2018.6672
Janiszewska J, Szaumkessel M, Kostrzewska-Poczekaj M, et al. Global miRNA expression profiling identifies miR-1290 as novel potential oncomiR in laryngeal carcinoma. PLoS One. 2015;10(12):e0144924. doi:10.1371/journal.pone.0144924
Mo D, Gu B, Gong X, et al. miR-1290 is a potential prognostic biomarker in non-small cell lung cancer. J Thorac Dis. 2015;7(9):1570-1579. doi:10.3978/j.issn.2072-1439.2015.09.38
Wu Y, Wei J, Zhang W, Xie M, Wang X, Xu J. Serum exosomal miR-1290 is a potential biomarker for lung adenocarcinoma. Onco Targets Ther. 2020;13:7809-7818. doi:10.2147/ott.s263934
Shapira I, Oswald M, Lovecchio J, et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br J Cancer. 2014;110(4):976-983. doi:10.1038/bjc.2013.795
Záveský L, Jandáková E, Weinberger V, et al. Ascites-derived extracellular microRNAs as potential biomarkers for ovarian cancer. Reprod Sci. 2019;26(4):510-522. doi:10.1177/1933719118776808
Li A, Yu J, Kim H, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19(13):3600-3610. doi:10.1158/1078-0432.ccr-12-3092
Wei J, Yang L, Wu YN, Xu J. Serum miR-1290 and miR-1246 as potential diagnostic biomarkers of human pancreatic cancer. J Cancer. 2020;11(6):1325-1333. doi:10.7150/jca.38048
Tavano F, Gioffreda D, Valvano MR, et al. Droplet digital PCR quantification of miR-1290 as a circulating biomarker for pancreatic cancer. Sci Rep. 2018;8(1):16389. doi:10.1038/s41598-018-34597-z
Karasek P, Gablo N, Hlavsa J, et al. Pre-operative plasma miR-21-5p is a sensitive biomarker and independent prognostic factor in patients with pancreatic ductal adenocarcinoma undergoing surgical resection. Cancer Genomics Proteomics. 2018;15(4):321-327. doi:10.21873/cgp.20090
Ta N, Huang X, Zheng K, et al. miRNA-1290 promotes aggressiveness in pancreatic ductal adenocarcinoma by targeting IKK1. Cell Physiol Biochem. 2018;51(2):711-728. doi:10.1159/000495328
Liu HP, Lai HM, Guo Z. Prostate cancer early diagnosis: circulating microRNA pairs potentially beyond single microRNAs upon 1231 serum samples. Brief Bioinform. 2020;22, doi:10.1093/bib/bbaa111
Huang X, Yuan T, Liang M, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33-41. doi:10.1016/j.eururo.2014.07.035
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive overview of gene rearrangements in childhood T-cell acute lymphoblastic leukaemia. Int J Mol Sci. 2021;22(2):808. doi:10.3390/ijms22020808
Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300. doi:10.1001/jama.2018.19323
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191-e203. doi:10.1016/s2214-109x(19)30482-6
Marcuello M, Vymetalkova V, Neves R, et al. Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med. 2019;69:107-122. doi:10.1016/j.mam.2019.06.002
Liu, X, Xu X, Pan B, et al. Circulating miR-1290 and miR-320d as novel diagnostic biomarkers of human colorectal cancer. J Cancer. 2019;10(1):43-50. doi:10.7150/jca.26723
Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154(2):360-373. doi:10.1053/j.gastro.2017.08.023
Fan ST. Hepatocellular carcinoma-resection or transplant? Nat Rev Gastroenterol Hepatol. 2012;9(12):732-737. doi:10.1038/nrgastro.2012.158
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446-454. doi:10.1038/nature25183
Zhang WC, Chin TM, Yang H, et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 2016;7:11702. doi:10.1038/ncomms11702
Duffy MJ, O'Byrne K. Tissue and blood biomarkers in lung cancer: a review. Adv Clin Chem. 2018;86:1-21. doi:10.1016/bs.acc.2018.05.001
Irusta G. Roads to the strategic targeting of ovarian cancer treatment. Reproduction. 2021;161(1):R1-r11. doi:10.1530/rep-19-0593
Jafari M, Hasanzadeh M, Solhi E, et al. Ultrasensitive bioassay of epitope of Mucin-16 protein (CA 125) in human plasma samples using a novel immunoassay based on silver conductive nano-ink: A new platform in early stage diagnosis of ovarian cancer and efficient management. Int J Biol Macromol. 2019;126:1255-1265. doi:10.1016/j.ijbiomac.2019.01.009
Shen T, Huang Z, Shi C, et al. Pancreatic cancer-derived exosomes induce apoptosis of T lymphocytes through the p38 MAPK-mediated endoplasmic reticulum stress. FASEB J. 2020;34(6):8442-8458. doi:10.1096/fj.201902186R
Crawley AS, O'Kennedy RJ. The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Rev Mol Diagn. 2015;15(10):1339-1353. doi:10.1586/14737159.2015.1083862
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY). 2020;12(10):9380-9404. doi:10.18632/aging.103214
Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 2018;8(12), doi:10.1101/cshperspect.a030361
Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L. MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate. 2017;77(10):1167-1175. doi:10.1002/pros.23376
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5-29. doi:10.3322/caac.21254
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. doi:10.3322/caac.21262
Wulfken LM, Moritz R, Ohlmann C, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011;6(9):e25787. doi:10.1371/journal.pone.0025787
Zhu J, Ma X, Zhang Y, et al. Establishment of a miRNA-mRNA regulatory network in metastatic renal cell carcinoma and screening of potential therapeutic targets. Tumour Biol. 2016. doi:10.1007/s13277-016-5135-6
Endo Y, Toyama T, Takahashi S, et al. miR-1290 and its potential targets are associated with characteristics of estrogen receptor α-positive breast cancer. Endocr Relat Cancer. 2013;20(1):91-102. doi:10.1530/erc-12-0207
Wang B, Zhang K, Chen H, et al. MiR-1290 inhibits chordoma cell proliferation and invasion by targeting Robo1. Translational Cancer Research. 2019;8(2):542-551. doi:10.21037/tcr.2019.03.13
Wu J, Ji X, Zhu L, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells. Cancer Lett. 2013;329(2):155-163. doi:10.1016/j.canlet.2012.10.038
Ye L, Jiang T, Shao H, et al. miR-1290 is a biomarker in DNA-mismatch-repair-deficient colon cancer and promotes resistance to 5-fluorouracil by directly targeting hMSH2. Mol Ther Nucleic Acids. 2017;7:453-464. doi:10.1016/j.omtn.2017.05.006
Ma Q, Wang Y, Zhang H, Wang F. miR-1290 contributes to colorectal cancer cell proliferation by targeting INPP4B. Oncol Res. 2018;26(8):1167-1174. doi:10.3727/096504017x15051741798389
Xie, R, Wu SN, Gao CC, et al. Prognostic value of combined and individual expression of microRNA-1290 and its target gene nuclear factor I/X in human esophageal squamous cell carcinoma. Cancer Biomark. 2017;20(3):325-331. doi:10.3233/cbm-170029
Mao Y, Liu J, Zhang D, Li B. MiR-1290 promotes cancer progression by targeting nuclear factor I/X(NFIX) in esophageal squamous cell carcinoma (ESCC). Biomed Pharmacother. 2015;76:82-93. doi:10.1016/j.biopha.2015.10.005
Li M, He XY, Zhang ZM, et al. MicroRNA-1290 promotes esophageal squamous cell carcinoma cell proliferation and metastasis. World J Gastroenterol. 2015;21(11):3245-3255. doi:10.3748/wjg.v21.i11.3245
Lin M, Shi C, Lin X, et al. sMicroRNA-1290 inhibits cells proliferation and migration by targeting FOXA1 in gastric cancer cells. Gene. 2016;582(2):137-142. doi:10.1016/j.gene.2016.02.001
Zhu, Y, Jiang Q, Lou X, et al. MicroRNAs up-regulated by CagA of helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One. 2012;7(4):35147. doi:10.1371/journal.pone.0035147
Huang J, Shen M, Yan M, Cui Y, Gao Z, Meng X. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1. Acta Biochim Biophys Sin (Shanghai). 2019;51(9):900-907. doi:10.1093/abbs/gmz077
Liang Y, Liu Y, Zhang Q, Zhang H, Du J. Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res. 2020;231:102-112. doi:10.1016/j.trsl.2020.12.003
Yan L, Cai K, Sun K, Gui J, Liang J. MiR-1290 promotes proliferation, migration, and invasion of glioma cells by targeting LHX6. J Cell Physiol. 2018;233(10):6621-6629. doi:10.1002/jcp.26381
Khalighfard S, Kalhori MR, Haddad P, Khori V, Alizadeh AM. Enhancement of resistance to chemo-radiation by hsa-miR-1290 expression in glioblastoma cells. Eur J Pharmacol. 2020;880:173144. doi:10.1016/j.ejphar.2020.173144
Zhang J, Chen Z, Liu X, Yang C, Xie D. Gain of circBRAF represses glioma progression by regulating miR-1290/FBXW7 Axis. Neurochem Res. 2021;46:1203-1213. doi:10.1007/s11064-021-03259-4
Yu Y, Han S, Li M, Song Y, Qi F. Circ_0004913 sponges miR-1290 and regulates FOXC1 to inhibit the proliferation of hepatocellular carcinoma. Cancer Cell Int. 2020;20(1):1-11. doi:10.1186/s12935-020-01521-3
Sun, B, Yang N, Jiang Y, et al. Antagomir-1290 suppresses CD133+ cells in non-small cell lung cancer by targeting fyn-related Src family tyrosine kinase. Tumor Biol. 2015;36(8):6223-6230. doi:10.1007/s13277-015-3307-4
Kim G, An HJ, Lee MJ, et al. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer. 2016;91:15-22. doi:10.1016/j.lungcan.2015.11.013
Jin JJ, Liu YH, Si JM, Ni R, Wang J. Overexpression of miR-1290 contributes to cell proliferation and invasion of non small cell lung cancer by targeting interferon regulatory factor 2. Int J Biochem Cell Biol. 2018;95:113-120. doi:10.1016/j.biocel.2017.12.017
Xiao X, Yang D, Gong X, Mo D, Pan S, Xu J. miR-1290 promotes lung adenocarcinoma cell proliferation and invasion by targeting SOCS4. Oncotarget. 2018;9(15):11977-11988. doi:10.18632/oncotarget.24046
Guan S, Wu Y, Zhang Q, Zhou J. TGF-β1 induces CREB1-mediated miR-1290 upregulation to antagonize lung fibrosis via Napsin A. Int J Mol Med. 2020;46(1):141-148. doi:10.3892/ijmm.2020.4565
Walbrecq G, Lecha O, Gaigneaux A, et al. Hypoxia-Induced Adaptations of miRNomes and Proteomes in Melanoma Cells and Their Secreted Extracellular Vesicles. Cancers (Basel). 2020;12(3), doi:10.3390/cancers12030692
Luan W, Qian Y, Ni X, et al. Polygonatum odoratum lectin promotes BECN1 expression and induces autophagy in malignant melanoma by regulation of miR1290. Onco Targets Ther. 2017;10:4569-4577. doi:10.2147/OTT.S147406
Qin WJ, Wang WP, Wang XB, Zhang XT, Du JD. MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2019;23(23):10332-10342. doi:10.26355/eurrev_201912_19671
Chen X, Huang Y, Shi D, et al. LncRNA ZNF667-AS1 promotes ABLIM1 expression by adsorbing micro RNA-1290 to suppress nasopharyngeal carcinoma cell progression. Onco Targets Ther. 2020;13:4397-4409. doi:10.2147/ott.s245554
Rugo HS, Ettl J, Hurvitz SA, et al. Outcomes in clinically relevant patient subgroups from the EMBRACA study: talazoparib vs physician's choice standard-of-care chemotherapy. JNCI Cancer Spectr. 2020;4(1):pkz085. doi:10.1093/jncics/pkz085
Dhaini HR, El Hafi B, Khamis AM. NAT1 genotypic and phenotypic contribution to urinary bladder cancer risk: a systematic review and meta-analysis. Drug Metab Rev. 2018;50(2):208-219. doi:10.1080/03602532.2017.1415928
Endo Y, Yamashita H, Takahashi S, et al. Immunohistochemical determination of the miR-1290 target arylamine N-acetyltransferase 1 (NAT1) as a prognostic biomarker in breast cancer. BMC Cancer. 2014;14:990. doi:10.1186/1471-2407-14-990
Yao T, Rao Q, Liu L, et al. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virol J. 2013;10:175. doi:10.1186/1743-422x-10-175
Zhang B, Chen J, Ren Z, et al. A specific miRNA signature promotes radioresistance of human cervical cancer cells. Cancer Cell Int. 2013;13(1):118. doi:10.1186/1475-2867-13-118
Meng T, Jin J, Jiang C, et al. Molecular targeted therapy in the treatment of chordoma: a systematic review. Front Oncol. 2019;9:30. doi:10.3389/fonc.2019.00030
Chen K, Chen H, Zhang K, et al. MicroRNA profiling and bioinformatics analyses reveal the potential roles of microRNAs in chordoma. Oncol Lett. 2017;14(5):5533-5539. doi:10.3892/ol.2017.6839
Huang W, Yan YG, Wang WJ, et al. Development and validation of a 6-miRNA prognostic signature in spinal chordoma. Front Oncol. 2020;10:556902. doi:10.3389/fonc.2020.556902
Nguyen LTS, Robinson DN. The unusual suspects in cytokinesis: fitting the pieces together. Front Cell Dev Biol. 2020;8:441. doi:10.3389/fcell.2020.00441
Lens SMA, Medema RH. Cytokinesis defects and cancer. Nat Rev Cancer. 2019;19(1):32-45. doi:10.1038/s41568-018-0084-6
Brandt DT, Baarlink C, Kitzing TM, et al. SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin. Nat Cell Biol. 2009;11(5):557-568. doi:10.1038/ncb1862
Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654-2664. doi:10.1016/s0140-6736(16)30354-3
Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol. 2020;17(1):50-63. doi:10.1038/s41423-019-0339-5
Zhu Y, Zhong X, Zheng S, Du Q, Xu W. Transformed immortalized gastric epithelial cells by virulence factor CagA of Helicobacter pylori through Erk mitogen-activated protein kinase pathway. Oncogene. 2005;24(24):3886-3895. doi:10.1038/sj.onc.1208551
Kalhori MR, Arefian E, Fallah Atanaki F, Kavousi K, Soleimani M. miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines. Sci Rep. 2020;10(1):1558. doi:10.1038/s41598-020-57588-5
Bao ZS, Zhang CB, Wang HJ, et al. Whole-genome mRNA expression profiling identifies functional and prognostic signatures in patients with mesenchymal glioblastoma multiforme. CNS Neurosci Ther. 2013;19(9):714-720. doi:10.1111/cns.12118
Tűzesi Á, Kling T, Wenger A, et al. Pediatric brain tumor cells release exosomes with a miRNA repertoire that differs from exosomes secreted by normal cells. Oncotarget. 2017;8(52):90164-90175. doi:10.18632/oncotarget.21621
Xie, F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416. doi:10.1016/j.biomaterials.2020.120416
Kim BR, Seo SH, Park MS, Lee SH, Kwon Y, Rho SB. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1α signaling pathways. Oncotarget. 2015;6(31):31830-31843. doi:10.18632/oncotarget.5570
Yang C, Sun C, Liang X, Xie S, Huang J, Li D. Integrative analysis of microRNA and mRNA expression profiles in non-small-cell lung cancer. Cancer Gene Ther. 2016;23(4):90-97. doi:10.1038/cgt.2016.5
Deng H, Sun Y, Zeng W, et al. New classification of macrophages in plaques: a revolution. Curr Atheroscler Rep. 2020;22(8):31. doi:10.1007/s11883-020-00850-y
Turner BM, Cagle PT, Sainz IM, Fukuoka J, Shen SS, Jagirdar J. Napsin A, a new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136(2):163-171. doi:10.5858/arpa.2011-0320-OA
Arozarena I, Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer. 2019;19(7):377-391. doi:10.1038/s41568-019-0154-4
Rofstad EK, Rasmussen H, Galappathi K, Mathiesen B, Nilsen K, Graff BA. Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res. 2002;62(6):1847-1853.
Hsu, YL, Hung JY, Chang WA, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929-4942. doi:10.1038/onc.2017.105
Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett. 2007;249(2):188-197. doi:10.1016/j.canlet.2006.08.016
Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352), doi:10.1126/science.aan2507
Kaštelan S, Gverović Antunica A, Beketić Orešković L, Salopek Rabatić J, Kasun B, Bakija I. Conjunctival melanoma - epidemiological trends and features. Pathol Oncol Res. 2018;24(4):787-796. doi:10.1007/s12253-018-0419-3
Grimes JM, Shah NV, Samie FH, Carvajal RD, Marr BP. Conjunctival melanoma: current treatments and future options. Am J Clin Dermatol. 2020;21(3):371-381. doi:10.1007/s40257-019-00500-3
Mikkelsen LH, Andersen MK, Andreasen S, et al. Global microRNA profiling of metastatic conjunctival melanoma. Melanoma Res. 2019;29(5):465-473. doi:10.1097/cmr.0000000000000606
Gröbe A, Blessmann M, Hanken H, et al. Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity. Clin Cancer Res. 2014;20(2):425-433. doi:10.1158/1078-0432.ccr-13-1101
Kim Y, Shintani S, Kohno Y, Zhang R, Wong DT. Cyclin G2 dysregulation in human oral cancer. Cancer Res. 2004;64(24):8980-8986. doi:10.1158/0008-5472.can-04-1926
Diniz MG, Silva Jde F, de Souza FT, Pereira NB, Gomes CC, Gomez RS. Association between cell cycle gene transcription and tumor size in oral squamous cell carcinoma. Tumour Biol. 2015;36(12):9717-9722. doi:10.1007/s13277-015-3735-1
Ramakrishnan P, Loh WM, Gopinath S, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020;10(3):399-413. doi:10.1016/j.apsb.2019.11.008
Masamune A, Yoshida N, Hamada S, Takikawa T, Nabeshima T, Shimosegawa T. Exosomes derived from pancreatic cancer cells induce activation and profibrogenic activities in pancreatic stellate cells. Biochem Biophys Res Commun. 2018;495(1):71-77. doi:10.1016/j.bbrc.2017.10.141
Takikawa T, Masamune A, Yoshida N, Hamada S, Kogure T, Shimosegawa T. Exosomes derived from pancreatic stellate cells: MicroRNA signature and effects on pancreatic cancer cells. Pancreas. 2017;46(1):19-27. doi:10.1097/mpa.0000000000000722
Amrutkar M, Gladhaug IP. Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel). 2017;9(11):157. doi:10.3390/cancers9110157
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363-385. doi:10.3322/caac.21565
Wong R, Malthaner R. Combined chemotherapy and radiotherapy (without surgery) compared with radiotherapy alone in localized carcinoma of the esophagus. Cochrane Database Syst Rev. 2006;1:Cd002092. doi:10.1002/14651858.CD002092.pub2
Wang M, Yu F, Chen X, Li P, Wang K. The underlying mechanisms of noncoding RNAs in the chemoresistance of hepatocellular carcinoma. Mol Ther Nucleic Acids. 2020;21:13-27. doi:10.1016/j.omtn.2020.05.011
Perey L, Paridaens R, Hawle H, et al. Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann Oncol. 2007;18(1):64-69. doi:10.1093/annonc/mdl341
Zhou Q, Zeng H, Ye P, Shi Y, Guo J, Long X. Differential microRNA profiles between fulvestrant-resistant and tamoxifen-resistant human breast cancer cells. Anticancer Drugs. 2018;29(6):539-548. doi:10.1097/cad.0000000000000623
Chen WX, Xu LY, Cheng L, et al. Bioinformatics analysis of dysregulated microRNAS in exosomes from docetaxel-resistant and parental human breast cancer cells. Cancer Manag Res. 2019;11:5425-5435. doi:10.2147/CMAR.S201335
Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol. 2005;6(4):229-239. doi:10.1016/s1470-2045(05)70094-2
Chen WX, Cai YQ, Lv MM, et al. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol. 2014;35(10):9649-9659. doi:10.1007/s13277-014-2242-0
Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17(Suppl 5):v7-v12. doi:10.1093/annonc/mdj941
Kozinn SI, Harty NJ, Delong JM, et al. MicroRNA profile to predict gemcitabine resistance in bladder carcinoma cell lines. Genes Cancer. 2013;4(1-2):61-69. doi:10.1177/1947601913484495
Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA. Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm. 2017;526(1-2):474-495. doi:10.1016/j.ijpharm.2017.05.016
Yan H, Wang S, Yu H, Zhu J, Chen C. Molecular pathways and functional analysis of miRNA expression associated with paclitaxel-induced apoptosis in hepatocellular carcinoma cells. Pharmacology. 2013;92(3-4):167-174. doi:10.1159/000354585
Li Q, Liu M, Ma F, et al. Circulating miR-19a and miR-205 in serum may predict the sensitivity of luminal a subtype of breast cancer patients to neoadjuvant chemotherapy with epirubicin plus paclitaxel. PLoS One. 2014;9(8):104870. doi:10.1371/journal.pone.0104870
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447. doi:10.1016/j.pharmthera.2019.107447
Sinicrope FA, Foster NR, Thibodeau SN, et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst. 2011;103(11):863-875. doi:10.1093/jnci/djr153
Sharma RA, Plummer R, Stock JK, et al. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol. 2016;13(10):627-642. doi:10.1038/nrclinonc.2016.79
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting microRNAs in prostate cancer radiotherapy. Theranostics. 2017;7(13):3243-3259. doi:10.7150/thno.19934
Mohammadi C, Gholamzadeh Khoei S, Fayazi N, Mohammadi Y, Najafi R. miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2020;157:103183. doi:10.1016/j.critrevonc.2020.103183
Kobayashi R, Yamashita H, Okuma K, Ohtomo K, Nakagawa K. Details of recurrence sites after definitive radiation therapy for cervical cancer. J Gynecol Oncol. 2016;27(2):e16. doi:10.3802/jgo.2016.27.e16
Fan L, Cao Q, Ding X, Gao D, Yang Q, Li B. Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels. Cancer Med. 2020;9(14):5065-5074. doi:10.1002/cam4.3115
Debnath T, Deb Nath NC, Kim EK, Lee KG. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct. 2017;8(10):3432-3442. doi:10.1039/c7fo00739f
Kalhori MRR, Khodayari H, Khodayari S, et al. Regulation of long non-coding RNAs by plant secondary metabolites: a novel anticancer therapeutic approach. Cancers. 2021;13(6):1274. doi:10.3390/cancers13061274
Gupta B, Sadaria D, Warrier VU, et al. Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol. 2020. doi:10.1016/j.semcancer.2020.02.005
Jiang QL, Zhang S, Tian M, et al. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif. 2015;48(1):17-28. doi:10.1111/cpr.12155
Wu L, Liu T, Xiao Y, et al. Polygonatum odoratum lectin induces apoptosis and autophagy by regulation of microRNA-1290 and microRNA-15a-3p in human lung adenocarcinoma A549 cells. Int J Biol Macromol. 2016;85:217-226. doi:10.1016/j.ijbiomac.2015.11.014
Laddha SV, Ganesan S, Chan CS, White E. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 2014;12(4):485-490. doi:10.1158/1541-7786.mcr-13-0614
Ghorbani A, Zand H, Jeddi-Tehrani M, Koohdani F, Shidfar F, Keshavarz SA. PTEN over-expression by resveratrol in acute lymphoblastic leukemia cells along with suppression of AKT/PKB and ERK1/2 in genotoxic stress. J Nat Med. 2015;69(4):507-512. doi:10.1007/s11418-015-0915-7
Zhou W, Wang S, Ying Y, Zhou R, Mao P. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol Rep. 2017;37(2):1075-1083. doi:10.3892/or.2016.5321
Zhang JM, Wang CC, Zhang GC, et al. ADAM28 promotes tumor growth and dissemination of acute myeloid leukemia through IGFBP-3 degradation and IGF-I-induced cell proliferation. Cancer Lett. 2019;442:193-201. doi:10.1016/j.canlet.2018.10.028
Li X, Chu S, Lin M, et al. Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem. 2020;203:112627. doi:10.1016/j.ejmech.2020.112627
An IS, An S, Kwon KJ, Kim YJ, Bae S. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells. Oncol Rep. 2013;29(2):523-528. doi:10.3892/or.2012.2136
Kim, KB, Kim K, Bae S, et al. MicroRNA-1290 promotes asiatic acid-induced apoptosis by decreasing BCL2 protein level in A549 non-small cell lung carcinoma cells. Oncol Rep. 2014;32(3):1029-1036. doi:10.3892/or.2014.3319
Dong Z, Li S, Wu X, et al. Aberrant hypermethylation-mediated downregulation of antisense lncRNA ZNF667-AS1 and its sense gene ZNF667 correlate with progression and prognosis of esophageal squamous cell carcinoma. Cell Death Dis. 2019;10(12):930. doi:10.1038/s41419-019-2171-3
Thean LF, Blöcker C, Li HH, et al. Enhancer-derived long non-coding RNAs CCAT1 and CCAT2 at rs6983267 has limited predictability for early stage colorectal carcinoma metastasis. Sci Rep. 2021;11(1):404. doi:10.1038/s41598-020-79906-7
Lai XJ, Cheng HF. LncRNA colon cancer-associated transcript 1 (CCAT1) promotes proliferation and metastasis of ovarian cancer via miR-1290. Eur Rev Med Pharmacol Sci. 2018;22(2):322-328. doi:10.26355/eurrev_201801_14175
Wang B, Zhang K, Meng S, et al. LncRNA-NONHSAT024778 promote the proliferation and invasion of chordoma cell by regulating miR-1290/Robo1 axis. Int J Biol Sci. 2021;17(3):796-806. doi:10.7150/ijbs.54091
Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26(1):29. doi:10.1186/s12929-019-0523-z
Wang J, Luo J, Wu X, Gao Z. Circular RNA_0000629 suppresses bladder cancer progression mediating microRNA-1290/CDC73. Cancer Manag Res. 2021;13:2701-2715. doi:10.2147/cmar.s292863