Rapid genome editing by CRISPR-Cas9-POLD3 fusion.
CRISPR-Cas9
cell biology
gene editing
molecular biology
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
13 12 2021
13 12 2021
Historique:
received:
13
11
2021
accepted:
15
11
2021
pubmed:
14
12
2021
medline:
27
1
2022
entrez:
13
12
2021
Statut:
epublish
Résumé
Precision CRISPR gene editing relies on the cellular homology-directed DNA repair (HDR) to introduce custom DNA sequences to target sites. The HDR editing efficiency varies between cell types and genomic sites, and the sources of this variation are incompletely understood. Here, we have studied the effect of 450 DNA repair protein-Cas9 fusions on CRISPR genome editing outcomes. We find the majority of fusions to improve precision genome editing only modestly in a locus- and cell-type specific manner. We identify Cas9-POLD3 fusion that enhances editing by speeding up the initiation of DNA repair. We conclude that while DNA repair protein fusions to Cas9 can improve HDR CRISPR editing, most need to be optimized to the cell type and genomic site, highlighting the diversity of factors contributing to locus-specific genome editing outcomes.
Identifiants
pubmed: 34898428
doi: 10.7554/eLife.75415
pii: 75415
pmc: PMC8747517
doi:
pii:
Substances chimiques
DNA Polymerase III
EC 2.7.7.7
CRISPR-Associated Protein 9
EC 3.1.-
Banques de données
SRA
['SRP050338']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2021, Reint et al.
Déclaration de conflit d'intérêts
GR, ZL, KL, SK, IS, KM, ET, MS, LM, SL, AC, XH, DB, JS, EV, BS, MV, JT, EH No competing interests declared
Références
J Biotechnol. 2006 Feb 10;121(3):291-8
pubmed: 16150509
Nat Commun. 2019 Apr 8;10(1):1598
pubmed: 30962441
Front Genet. 2019 Apr 30;10:365
pubmed: 31114605
Nat Commun. 2020 Feb 28;11(1):1109
pubmed: 32111820
Elife. 2021 Dec 13;10:
pubmed: 34898428
Nat Med. 2018 Jul;24(7):927-930
pubmed: 29892067
Nat Biotechnol. 2015 May;33(5):538-42
pubmed: 25798939
DNA Repair (Amst). 2002 Oct 1;1(10):779-93
pubmed: 12531026
BMC Genomics. 2017 May 15;18(1):379
pubmed: 28506212
Nat Commun. 2018 Mar 19;9(1):1133
pubmed: 29556040
Cell Stem Cell. 2019 Apr 4;24(4):551-565.e8
pubmed: 30905619
Nat Biotechnol. 2015 Feb;33(2):187-197
pubmed: 25513782
Elife. 2018 May 29;7:
pubmed: 29809142
Science. 1998 Nov 6;282(5391):1145-7
pubmed: 9804556
Nucleic Acids Res. 2014 Dec 16;42(22):13736-48
pubmed: 25428364
Sci Transl Med. 2021 Jun 16;13(598):
pubmed: 34135108
Haematologica. 2021 Mar 01;106(3):847-858
pubmed: 32241852
Methods Mol Biol. 2018;1768:349-362
pubmed: 29717453
CRISPR J. 2019 Feb;2:51-63
pubmed: 31021236
Sci Rep. 2016 Dec 15;6:38873
pubmed: 27974823
Immunity. 1997 Nov;7(5):653-65
pubmed: 9390689
Mol Cell. 2013 Sep 12;51(5):678-90
pubmed: 23993743
Genome Med. 2015 Aug 27;7:93
pubmed: 26307031
Science. 2017 Sep 29;357(6358):1420-1424
pubmed: 28963258
Genome Res. 2019 May;29(5):843-847
pubmed: 30850374
Nat Commun. 2019 Jun 28;10(1):2866
pubmed: 31253785
Nucleic Acids Res. 2020 Feb 20;48(3):1285-1300
pubmed: 31777915
Sci Rep. 2016 Mar 31;6:23549
pubmed: 27030102
Cell Rep. 2018 Dec 4;25(10):2653-2659.e3
pubmed: 30517854
Mol Cell. 2001 Dec;8(6):1175-85
pubmed: 11779494
Nat Methods. 2014 Aug;11(8):783-784
pubmed: 25075903
Nat Commun. 2017 Apr 07;8:14958
pubmed: 28387220
Nat Biotechnol. 2016 Mar;34(3):339-44
pubmed: 26789497
Nat Genet. 2018 Aug;50(8):1132-1139
pubmed: 30054595
Hum Mutat. 2017 Mar;38(3):269-274
pubmed: 28054750
Nature. 2018 Jul;559(7714):405-409
pubmed: 29995861
Cell Rep. 2016 Feb 16;14(6):1555-1566
pubmed: 26854237
Nat Commun. 2018 Jun 4;9(1):2164
pubmed: 29867139
Curr Opin Biotechnol. 2019 Feb;55:68-73
pubmed: 30189348
Genes (Basel). 2018 Aug 17;9(8):
pubmed: 30126151
Leukemia. 2010 Apr;24(4):679-86
pubmed: 20130602
Nat Commun. 2018 Mar 22;9(1):1188
pubmed: 29568061
Mol Cell. 2018 Jul 5;71(1):42-55.e8
pubmed: 29979968