Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 12 2021
14 12 2021
Historique:
received:
08
02
2021
accepted:
16
11
2021
entrez:
15
12
2021
pubmed:
16
12
2021
medline:
11
1
2022
Statut:
epublish
Résumé
Relatively little is known about Nubia's genetic landscape prior to the influence of the Islamic migrations that began in the late 1st millennium CE. Here, we increase the number of ancient individuals with genome-level data from the Nile Valley from three to 69, reporting data for 66 individuals from two cemeteries at the Christian Period (~650-1000 CE) site of Kulubnarti, where multiple lines of evidence suggest social stratification. The Kulubnarti Nubians had ~43% Nilotic-related ancestry (individual variation between ~36-54%) with the remaining ancestry consistent with being introduced through Egypt and ultimately deriving from an ancestry pool like that found in the Bronze and Iron Age Levant. The Kulubnarti gene pool - shaped over a millennium - harbors disproportionately female-associated West Eurasian-related ancestry. Genetic similarity among individuals from the two cemeteries supports a hypothesis of social division without genetic distinction. Seven pairs of inter-cemetery relatives suggest fluidity between cemetery groups. Present-day Nubians are not directly descended from the Kulubnarti Nubians, attesting to additional genetic input since the Christian Period.
Identifiants
pubmed: 34907168
doi: 10.1038/s41467-021-27356-8
pii: 10.1038/s41467-021-27356-8
pmc: PMC8671435
doi:
Types de publication
Historical Article
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
7283Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM100233
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG012287
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Adams, W. Y. Nubia: Corridor to Africa (Princeton University Press, 1977).
Fox, C. L. mtDNA analysis in ancient Nubians supports the existence of gene flow between sub-Sahara and North Africa in the Nile Valley. Ann. Hum. Biol. 24, 217–227 (1997).
pubmed: 9158841
doi: 10.1080/03014469700004952
Krings, M. et al. mtDNA analysis of Nile River Valley populations: a genetic corridor or a barrier to migration? Am. J. Hum. Genet. 64, 1166–1176 (1999).
pubmed: 10090902
pmcid: 1377841
doi: 10.1086/302314
Edwards, D. N. The potential for Historical Archaeology in the Sudan. Azania.: Archaeological Res. Afr. 39, 13–33 (2004).
doi: 10.1080/00672700409480384
Edwards, D. N. The archaeology of Sudan and Nubia. Annu. Rev. Anthropol. 36, 211–228 (2007).
doi: 10.1146/annurev.anthro.36.081406.094305
Carlson, D. S. Temporal variation in prehistoric Nubian crania. Am. J. Phys. Anthropol. 45, 467–484 (1976).
pubmed: 998767
doi: 10.1002/ajpa.1330450308
Carlson, D. S. & Gerven, D. P. Diffusion, biological determinism, and biocultural adaptation in the Nubian corridor. Am. Anthropologist 81, 561–580 (1979).
doi: 10.1525/aa.1979.81.3.02a00030
Greene, D. L. Discrete dental variations and biological distances of Nubian populations. Am. J. Phys. Anthropol. 58, 75–79 (1982).
pubmed: 7124917
doi: 10.1002/ajpa.1330580109
Van Gerven, D. P. The contribution of time and local geography to craniofacial variation in Nubia’s Batn el Hajar. Am. J. Phys. Anthropol. 59, 307–316 (1982).
pubmed: 6760729
doi: 10.1002/ajpa.1330590312
Irish, J. & Turner, C. West African dental affinity of late Pleistocene Nubians peopling of the Eurafrican-South Asian triangle II. Homo 41, 42–53 (1990).
Johnson, A. L. & Lovell, N. C. Dental morphological evidence for biological continuity between the A‐group and C‐group periods in lower Nubia. Int. J. Osteoarchaeology 5, 368–376 (1995).
doi: 10.1002/oa.1390050407
Prowse, T. L. & Lovell, N. C. Biological continuity between the A‐and C‐groups in lower Nubia: Evidence from cranial non‐metric traits. Int. J. Osteoarchaeology 5, 103–114 (1995).
doi: 10.1002/oa.1390050202
Irish, J. D. Population continuity vs. discontinuity revisited: Dental affinities among late Paleolithic through Christian‐era Nubians. Am. J. Phys. Anthropol. 128, 520–535 (2005).
pubmed: 15895433
doi: 10.1002/ajpa.20109
Galland, M., Van Gerven, D. P., Von Cramon-Taubadel, N. & Pinhasi, R. 11,000 years of craniofacial and mandibular variation in Lower Nubia. Sci. Rep. 6 (2016).
Kirwan, L. P. The international position of Sudan in Roman and medieval times. Sudan Notes Rec. 40, 23–37 (1959).
Adams, W. Y. Post-Pharaonic Nubia in the light of archaeology. II. J. Egypt. Archaeol. 51, 160–178 (1965).
doi: 10.1177/030751336505100117
Vantini, G. Oriental Sources Concerning Nubia (Heidelberg and Warsaw, 1975).
Säve-Söderbergh, T. Temples and Tombs of Ancient Nubia: the International Rescue Campaign at Abu Simbel, Philae and other sites (Thames and Hudson, 1987).
Shinnie, P. L. Ancient Nubia (Columbia University Press, 1996).
Hollfelder, N. et al. Northeast African genomic variation shaped by the continuity of indigenous groups and Eurasian migrations. PLOS Genet. 13, e1006976 (2017).
pubmed: 28837655
pmcid: 5587336
doi: 10.1371/journal.pgen.1006976
Adams, W. Y., Van Gerven, D. & Guise, D. Kulubnarti III: The Cemeteries (Archaeopress, 1999).
Van Gerven, D., Sheridan, S. G. & Adams, W. Y. The health and nutrition of a Medieval Nubian population. Am. Anthropologist 97, 468–480 (1995).
doi: 10.1525/aa.1995.97.3.02a00060
Van Gerven, D. P., Sandford, M. K. & Hummert, J. R. Mortality and culture change in Nubia’s Batn el Hajar. J. Hum. Evolution 10, 395–408 (1981).
doi: 10.1016/S0047-2484(81)80003-6
Hummert, J. R. Cortical bone growth and dietary stress among subadults from Nubia’s Batn El Hajar. Am. J. Phys. Anthropol. 62, 167–176 (1983).
pubmed: 6650678
doi: 10.1002/ajpa.1330620206
Hummert, J. R. & van Gerven, D. P. Skeletal growth in a medieval population from Sudanese Nubia. Am. J. Phys. Anthropol. 60, 471–478 (1983).
pubmed: 6846518
doi: 10.1002/ajpa.1330600409
Adams, W. Y. & Adams, N. K. In Cahiers de Recherches de l’Institut de Papyrologie et d’Égyptologie de Lille (ed. Gratien, B.) (2006).
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
pubmed: 26098372
pmcid: 4537386
doi: 10.1038/nature14558
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).
pubmed: 23341637
pmcid: 3568306
doi: 10.1073/pnas.1221359110
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
pubmed: 25731166
pmcid: 5048219
doi: 10.1038/nature14317
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
pubmed: 26595274
pmcid: 4918750
doi: 10.1038/nature16152
Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 1–11 (2017).
doi: 10.1038/ncomms15694
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
pubmed: 29466330
pmcid: 6091220
doi: 10.1038/nature25778
Lazaridis, I. The evolutionary history of human populations in Europe. Curr. Opin. Genet. Dev. 53, 21–27 (2018).
pubmed: 29960127
doi: 10.1016/j.gde.2018.06.007
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
pubmed: 27459054
pmcid: 5003663
doi: 10.1038/nature19310
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
pubmed: 25230663
pmcid: 4170574
doi: 10.1038/nature13673
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
pubmed: 29144465
pmcid: 5973800
doi: 10.1038/nature24476
van den Brink, E. C. M. et al. A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levant 49, 105–135 (2017).
doi: 10.1080/00758914.2017.1368204
Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 1–11 (2018).
Feldman, M. et al. Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Sci. Adv. 5, eaax0061 (2019).
pubmed: 31281897
pmcid: 6609216
doi: 10.1126/sciadv.aax0061
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).
pubmed: 31488661
pmcid: 6822619
doi: 10.1126/science.aat7487
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
pubmed: 30872528
pmcid: 6436108
doi: 10.1126/science.aav4040
Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern levant. Cell 181, 1146–1157 (2020).
pubmed: 32470400
doi: 10.1016/j.cell.2020.04.024
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).
pubmed: 22936568
pmcid: 3617501
doi: 10.1126/science.1224344
Pagani, L. et al. Ethiopian genetic diversity reveals linguistic stratification and complex influences on the Ethiopian gene pool. Am. J. Hum. Genet. 91, 83–96 (2012).
pubmed: 22726845
pmcid: 3397267
doi: 10.1016/j.ajhg.2012.05.015
Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).
pubmed: 24352235
doi: 10.1038/nature12886
Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015).
pubmed: 26196601
pmcid: 4982469
doi: 10.1038/nature14895
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
pubmed: 27654912
pmcid: 5161557
doi: 10.1038/nature18964
Fan, S. et al. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biol. 20, 1–14 (2019).
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 1–11 (2021).
doi: 10.1038/s41467-021-25289-w
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
pubmed: 29335644
doi: 10.1038/nrg.2017.109
Babiker, H., Schlebusch, C. M., Hassan, H. Y. & Jakobsson, M. Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR) loci. Investigative Genet. 2, 1–13 (2011).
doi: 10.1186/2041-2223-2-12
Dobon, B. et al. The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape. Sci. Rep. 5, 1–11 (2015).
doi: 10.1038/srep09996
Pickrell, J. K. et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl Acad. Sci. USA 111, 2632–2637 (2014).
pubmed: 24550290
pmcid: 3932865
doi: 10.1073/pnas.1313787111
Gallego-Llorente, M. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015).
pubmed: 26449472
doi: 10.1126/science.aad2879
Busby, G. B. et al. Admixture into and within sub-Saharan Africa. Elife 5, e15266 (2016).
pubmed: 27324836
pmcid: 4915815
doi: 10.7554/eLife.15266
Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).
pubmed: 31147405
pmcid: 6827346
doi: 10.1126/science.aaw6275
Wang, K. et al. Ancient genomes reveal complex patterns of population movement, interaction, and replacement in sub-Saharan Africa. Sci. Adv. 6, eaaz0183 (2020).
pubmed: 32582847
pmcid: 7292641
doi: 10.1126/sciadv.aaz0183
Adams, W. Y. & Adams, N. K. Kulubnarti II: The Artifactual Remains (Sudan Archaeological Research Society, 1998).
Prowse, T. L. & Lovell, N. C. Concordance of cranial and dental morphological traits and evidence for endogamy in ancient Egypt. Am. J. Phys. Anthropol. 101, 237–246 (1996).
pubmed: 8893087
doi: 10.1002/(SICI)1096-8644(199610)101:2<237::AID-AJPA8>3.0.CO;2-Z
Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71 (2017).
pubmed: 28938123
pmcid: 5679310
doi: 10.1016/j.cell.2017.08.049
Vollner, J. M. Examining the Population History of Three Medieval Nubian Sites through Craniometric Analyses (Michigan State University, 2016).
Godde, K. A new analysis interpreting Nilotic relationships and peopling of the Nile Valley. HOMO 69, 147–157 (2018).
pubmed: 30055809
doi: 10.1016/j.jchb.2018.07.002
Moorjani, P., Gao, Z. & Przeworski, M. Human germline mutation and the erratic evolutionary clock. PLOS Biol. 14, e2000744 (2016).
pubmed: 27760127
pmcid: 5070741
doi: 10.1371/journal.pbio.2000744
Wilkins, J. F. & Marlowe, F. W. Sex‐biased migration in humans: what should we expect from genetic data? Bioessays 28, 290–300 (2006).
pubmed: 16479583
doi: 10.1002/bies.20378
Molto, J. E. et al. Complete mitochondrial genome sequencing of a burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: preliminary indications. Genes 8, 262 (2017).
pmcid: 5664112
doi: 10.3390/genes8100262
Loreille, O. et al. Biological sexing of a 4000-year-old Egyptian mummy head to assess the potential of nuclear DNA recovery from the most damaged and limited forensic specimens. Genes 9, 135 (2018).
pmcid: 5867856
doi: 10.3390/genes9030135
Silva, M. et al. 60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2. Sci. Rep. 5, 1–13 (2015).
doi: 10.1038/srep12526
Salas, A. et al. The making of the African mtDNA landscape. Am. J. Hum. Genet. 71, 1082–1111 (2002).
pubmed: 12395296
pmcid: 385086
doi: 10.1086/344348
Stevanovitch, A. et al. Mitochondrial DNA sequence diversity in a sedentary population from Egypt. Ann. Hum. Genet. 68, 23–39 (2004).
pubmed: 14748828
doi: 10.1046/j.1529-8817.2003.00057.x
Gonder, M. K., Mortensen, H. M., Reed, F. A., de Sousa, A. & Tishkoff, S. A. Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evolution 24, 757–768 (2007).
doi: 10.1093/molbev/msl209
Trombetta, B. et al. Phylogeographic refinement and large scale genotyping of human Y chromosome haplogroup E provide new insights into the dispersal of early pastoralists in the African continent. Genome Biol. Evolution 7, 1940–1950 (2015).
doi: 10.1093/gbe/evv118
Hassan, H. Y., Underhill, P. A., Cavalli‐Sforza, L. L. & Ibrahim, M. E. Y‐chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history. Am. J. Phys. Anthropol. 137, 316–323 (2008).
pubmed: 18618658
doi: 10.1002/ajpa.20876
Cruciani, F. et al. A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes. Am. J. Hum. Genet. 70, 1197–1214 (2002).
pubmed: 11910562
pmcid: 447595
doi: 10.1086/340257
Osman, M. M. et al. Mitochondrial HVRI and whole mitogenome sequence variations portray similar scenarios on the genetic structure and ancestry of northeast Africans. Meta Gene 27, 100837 (2021).
doi: 10.1016/j.mgene.2020.100837
Adams, W. Y. Medieval Nubia: another golden age. Expedition 35, 28 (1993).
Luis, J. R. et al. The levant versus the Horn of Africa: evidence for bidirectional corridors of human migrations. Am. J. Hum. Genet. 74, 532–544 (2004).
pubmed: 14973781
pmcid: 1182266
doi: 10.1086/382286
Hartung, U. Some remarks on the chronological position of the Predynastic settlement at Maadi (Egypt) and its relations to the Southern Levant. Paléorient 39.1, 177–191 (2013).
doi: 10.3406/paleo.2013.5494
Adams, W. Y. Post-Pharaonic Nubia in the light of archaeology. I. J. Egypt. Archaeol. 50, 102–120 (1964).
doi: 10.1177/030751336405000110
Finneran, N. The Archaeology of Christianity in Africa (Tempus, 2002).
Buzon, M. Biological and ethnic identity in New Kingdom Nubia. Curr. Anthropol. 47, 683–695 (2006).
doi: 10.1086/506288
Smith, S. T. & Buzon, M. Colonial entanglements: “Egyptianization” in Egypt’s Nubian empire and the Nubian Dynasty. in The Fourth Cataract and Beyond: Proceedings of the 12th International Conference for Nubian Studies. British Museum Publications on Egypt and Sudan 1 (Peeters Leuven, 2014).
Edwards, D. N. The Nubian Past: An Archaeology of the Sudan (Routledge, 2004).
Turner, B. L., Edwards, J. L., Quinn, E. A., Kingston, J. D. & Van Gerven, D. P. Age-related variation in isotopic indicators of diet at medieval Kulubnarti, Sudanese Nubia. Int. J. Osteoarchaeology 17, 1–25 (2007).
doi: 10.1002/oa.862
Edwards, D. N. Meroe and the Sudanic kingdoms. J. Afr. Hist. 39, 175–193 (1998).
doi: 10.1017/S0021853797007172
Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).
pubmed: 30842617
doi: 10.1038/s41596-019-0137-7
Llamas, B. et al. From the field to the laboratory: controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR: Sci. Technol. Archaeological Res. 3, 1–14 (2017).
doi: 10.1080/20548923.2016.1258824
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
pubmed: 24019490
pmcid: 3785785
doi: 10.1073/pnas.1314445110
Korlevic, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. BioTechniques 58, 87–93 (2015).
doi: 10.2144/000114320
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
pubmed: 30323185
doi: 10.1038/s41596-018-0050-5
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20130624 (2015).
doi: 10.1098/rstb.2013.0624
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020).
pubmed: 32612278
doi: 10.1038/s41596-020-0338-0
Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79–e79 (2017).
pubmed: 28119419
pmcid: 5449542
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).
doi: 10.1186/s12859-014-0356-4
Behar Doron, M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).
pubmed: 22482806
pmcid: 3322232
doi: 10.1016/j.ajhg.2012.03.002
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
pubmed: 27084951
pmcid: 4987869
doi: 10.1093/nar/gkw233
Van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).
pubmed: 18853457
doi: 10.1002/humu.20921
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
pubmed: 17194218
pmcid: 1713260
doi: 10.1371/journal.pgen.0020190
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212
pmcid: 3522152
doi: 10.1534/genetics.112.145037
Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021).
Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).
pubmed: 22801491
pmcid: 3615710
doi: 10.1038/nature11258
Moorjani, P. et al. Genetic evidence for recent population mixture in India. Am. J. Hum. Genet. 93, 422–438 (2013).
pubmed: 23932107
pmcid: 3769933
doi: 10.1016/j.ajhg.2013.07.006