Increased motor cortex inhibition as a marker of compensation to chronic pain in knee osteoarthritis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 12 2021
14 12 2021
Historique:
received:
19
05
2021
accepted:
12
11
2021
entrez:
15
12
2021
pubmed:
16
12
2021
medline:
28
1
2022
Statut:
epublish
Résumé
This study aims to investigate the associative and multivariate relationship between different sociodemographic and clinical variables with cortical excitability as indexed by transcranial magnetic stimulation (TMS) markers in subjects with chronic pain caused by knee osteoarthritis (OA). This was a cross-sectional study. Sociodemographic and clinical data were extracted from 107 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models per TMS markers: motor threshold (MT), motor evoked potential (MEP), short intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). In our multivariate models, the two markers of intracortical inhibition, SICI and CSP, had a similar signature. SICI was associated with age (β: 0.01), WOMAC pain (β: 0.023), OA severity (as indexed by Kellgren-Lawrence Classification) (β: - 0.07), and anxiety (β: - 0.015). Similarly, CSP was associated with age (β: - 0.929), OA severity (β: 6.755), and cognition (as indexed by the Montreal Cognitive Assessment) (β: - 2.106). ICF and MT showed distinct signatures from SICI and CSP. ICF was associated with pain measured through the Visual Analogue Scale (β: - 0.094) and WOMAC (β: 0.062), and anxiety (β: - 0.039). Likewise, MT was associated with WOMAC (β: 1.029) and VAS (β: - 2.003) pain scales, anxiety (β: - 0.813), and age (β: - 0.306). These associations showed the fundamental role of intracortical inhibition as a marker of adaptation to chronic pain. Subjects with higher intracortical inhibition (likely subjects with more compensation) are younger, have greater cartilage degeneration (as seen by radiographic severity), and have less pain in WOMAC scale. While it does seem that ICF and MT may indicate a more acute marker of adaptation, such as that higher ICF and MT in the motor cortex is associated with lesser pain and anxiety.
Identifiants
pubmed: 34907209
doi: 10.1038/s41598-021-03281-0
pii: 10.1038/s41598-021-03281-0
pmc: PMC8671542
doi:
Types de publication
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
24011Informations de copyright
© 2021. The Author(s).
Références
Arch Gerontol Geriatr. 2013 Jan-Feb;56(1):279-84
pubmed: 22951029
J Clin Neurophysiol. 2020 Mar;37(2):170-180
pubmed: 32142025
Pain. 2013 Mar;154(3):419-426
pubmed: 23337291
Neurol Sci. 2021 Jan;42(1):131-139
pubmed: 32556749
Spine (Phila Pa 1976). 2000 Dec 15;25(24):3140-51
pubmed: 11124730
Neuropediatrics. 2004 Apr;35(2):120-5
pubmed: 15127311
Pain Med. 2013 Nov;14(11):1757-68
pubmed: 23924369
Brain Stimul. 2015 Sep-Oct;8(5):926-36
pubmed: 25944419
Clin Neurophysiol. 2020 Oct;131(10):2375-2382
pubmed: 32828040
Clin Rheumatol. 2020 Jan;39(1):269-274
pubmed: 31446538
Eur Spine J. 2006 Jan;15 Suppl 1:S17-24
pubmed: 16320034
Neurophysiol Clin. 2020 Sep;50(4):279-288
pubmed: 32654884
Neurophysiol Clin. 2021 Mar;51(2):161-173
pubmed: 33648819
J Pain. 2018 Apr;19(4):341-359
pubmed: 29155209
Clin Neurophysiol. 2015 Oct;126(10):1847-68
pubmed: 25534482
Front Neurol. 2021 Aug 09;12:695406
pubmed: 34434160
Brain. 2007 Oct;130(Pt 10):2661-70
pubmed: 17872930
Acta Psychiatr Scand. 2016 Aug;134(2):172-82
pubmed: 27028276
J Pain. 2020 May - Jun;21(5-6):514-528
pubmed: 31562994
Acta Orthop. 2014 Apr;85(2):128-32
pubmed: 24479622
Pain. 2010 Jun;149(3):573-581
pubmed: 20418016
Front Neurol. 2020 Jul 30;11:720
pubmed: 32849197
Pain Pract. 2020 Mar;20(3):277-288
pubmed: 31665822
Osteoarthritis Cartilage. 2015 Jul;23(7):1043-56
pubmed: 25749012
Arthritis Care Res. 2000 Oct;13(5):280-5
pubmed: 14635296
J Physiol. 1999 Jun 1;517 ( Pt 2):591-7
pubmed: 10332104
Am J Public Health. 2019 Jan;109(1):35-40
pubmed: 30495997
Clin Neurophysiol. 2015 Jun;126(6):1071-1107
pubmed: 25797650
J Speech Lang Hear Res. 2008 Feb;51(1):S225-39
pubmed: 18230848
J Psychiatry Neurosci. 2019 Feb 13;44(4):261-268
pubmed: 30758161
Neurobiol Aging. 2021 Dec;108:24-33
pubmed: 34479168
J Neurophysiol. 2017 Jul 1;118(1):425-433
pubmed: 28424294
Front Hum Neurosci. 2019 Jun 04;13:185
pubmed: 31214003
Front Hum Neurosci. 2019 Apr 25;13:138
pubmed: 31105542
Handb Clin Neurol. 2019;160:559-580
pubmed: 31277876
NeuroRehabilitation. 2015;36(1):51-9
pubmed: 25547768
Clin Neurophysiol. 2006 May;117(5):1037-46
pubmed: 16564206
Curr Pain Headache Rep. 2012 Dec;16(6):518-24
pubmed: 23054978
Exp Brain Res. 2014 Dec;232(12):3991-9
pubmed: 25183161
Medicine (Baltimore). 2016 Apr;95(17):e3353
pubmed: 27124022
Muscle Nerve. 1997 May;20(5):535-42
pubmed: 9140359
Neurology. 2003 Aug 26;61(4):515-9
pubmed: 12939426
Front Hum Neurosci. 2016 Jun 27;10:308
pubmed: 27445748
Exp Brain Res. 2020 Feb;238(2):321-332
pubmed: 31907554
Exp Gerontol. 2010 Sep;45(9):671-8
pubmed: 20417265
Neuroreport. 2011 Jul 13;22(10):499-503
pubmed: 21666519
Eur J Phys Rehabil Med. 2016 Oct;52(5):630-636
pubmed: 26616359
Source Code Biol Med. 2008 Dec 16;3:17
pubmed: 19087314
Exp Brain Res. 2009 Oct;198(4):489-500
pubmed: 19618169
Brain Stimul. 2016 Jul-Aug;9(4):488-500
pubmed: 27133804
Clin J Pain. 2018 Mar;34(3):262-275
pubmed: 28719507
Best Pract Res Clin Rheumatol. 2010 Feb;24(1):15-26
pubmed: 20129196
Neuroimage. 2011 Jan 1;54(1):90-102
pubmed: 20682352
Neurophysiol Clin. 2011 Jul;41(3):107-13
pubmed: 21784322
Ann N Y Acad Sci. 1999;893:154-75
pubmed: 10672236
Neurosci Lett. 2001 Nov 2;313(1-2):33-6
pubmed: 11684333
Neurology. 2011 Feb 15;76(7):615-21
pubmed: 21321335
Brain Inj. 2014;28(10):1270-6
pubmed: 24841536
Clin J Pain. 2016 Jun;32(6):541-54
pubmed: 26340657