Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy.
Deep brain stimulation
Gait
Near infrared spectroscopy
Neuroinformatics
Parkinson's disease
Subthalamic nucleus
Journal
Journal of applied biomedicine
ISSN: 1214-0287
Titre abrégé: J Appl Biomed
Pays: Poland
ID NLM: 101221755
Informations de publication
Date de publication:
Sep 2019
Sep 2019
Historique:
received:
30
05
2018
accepted:
19
08
2019
entrez:
15
12
2021
pubmed:
1
9
2019
medline:
1
9
2019
Statut:
ppublish
Résumé
Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI.
Identifiants
pubmed: 34907697
doi: 10.32725/jab.2019.014
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
157-166Subventions
Organisme : Czech Science foundation GACR
ID : 16-13323S
Pays : Czech Republic
Organisme : Czech Ministry of Health
ID : 16-28119a
Pays : Czech Republic
Organisme : Czech Ministry of Health
ID : 17-32318a
Pays : Czech Republic
Déclaration de conflit d'intérêts
The authors report no conflicts of interest in this work.
Références
Bae SJ, Jang SH, Seo JP, Chang PH (2017). The optimal speed for cortical activation of passive wrist movements performed by a rehabilitation robot: a functional NIRS study. Front Hum Neurosci 11: 194. DOI: 10.3389/fnhum.2017.00194.
pubmed: 28473763
doi: 10.3389/fnhum.2017.00194
Bick SK, Folley BS, Mayer JS, Park S, Charles PD, Camalier CR, et al. (2016). Subthalamic nucleus deep brain stimulation alters prefrontal correlates of emotion induction. Neuromodulation 20(3): 233-237. DOI: 10.1111/ner.12537.
pubmed: 27730703
doi: 10.1111/ner.12537
Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, Law I (1996). Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb Blood Flow Metab 16(5): 794-803. DOI: 10.1097/00004647-199609000-00004.
pubmed: 8784224
doi: 10.1097/00004647-199609000-00004
Boushel R, Piantadosi CA (2000). Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 168(4): 615-622. DOI: 10.1046/j.1365-201x.2000.00713.x.
pubmed: 10759598
doi: 10.1046/j.1365-201x.2000.00713.x
Ceballos-Baumann AO, Boecker H, Bartenstein P, Falkenhayn I, Riescher H, Conrad B, et al. (1999). A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56(8): 997-1003. DOI: 10.1001/archneur.56.8.997.
pubmed: 10448806
doi: 10.1001/archneur.56.8.997
Chang PH, Lee S-H, Gu K-M, Lee S-H, Jin S-H, Yeo SS, et al. (2014). The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study. Front Hum Neurosci 8: 49. DOI: 10.3389/fnhum.2014.00049.
pubmed: 24570660
doi: 10.3389/fnhum.2014.00049
Cope M, Delpy DT (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput 26(3): 289-294. DOI: 10.1007/BF02447083.
pubmed: 2855531
doi: 10.1007/BF02447083
Cui X, Bray S, Bryant DM, Glover GH, Reiss AL (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54(4): 2808-2821. DOI: 10.1016/j.neuroimage.2010.10.069.
pubmed: 21047559
doi: 10.1016/j.neuroimage.2010.10.069
Derosière G, Alexandre F, Bourdillon N, Mandrick K, Ward TE, Perrey S (2014). Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neuroimage 85: 471-477. DOI: 10.1016/j.neuroimage.2013.02.006.
pubmed: 23416251
doi: 10.1016/j.neuroimage.2013.02.006
Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller K-R, Blankertz B (2012). Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1): 519-529. DOI: 10.1016/j.neuroimage.2011.07.084.
pubmed: 21840399
doi: 10.1016/j.neuroimage.2011.07.084
Giacometti P, Diamond SG (2013). Compliant head probe for positioning electroencephalography electrodes and near-infrared spectroscopy optodes. J Biomed Opt 18(2): 27005. DOI: 10.1117/1.JBO.18.2.027005.
pubmed: 23377012
doi: 10.1117/1.JBO.18.2.027005
Gilat M, Shine JM, Walton CC, O'Callaghan C, Hall JM, Lewis SJ (2015). Brain activation underlying turning in Parkinson's disease patients with and without freezing of gait: a virtual reality fMRI study. NPJ Parkinsons Dis 1: 15020. DOI: 10.1038/npjparkd.2015.20.
pubmed: 28725687
doi: 10.1038/npjparkd.2015.20
Huang C, Chu H, Zhang Y, Wang X (2018). Deep brain stimulation to alleviate freezing of gait and cognitive dysfunction in Parkinson's disease: update on current research and future perspectives. Front Neurosci 12: 29. DOI: 10.3389/fnins.2018.00029.
pubmed: 29503606
doi: 10.3389/fnins.2018.00029
Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H (1999). A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92(1): 107-112. DOI: 10.1016/s0306-4522(98)00744-1.
pubmed: 10392834
doi: 10.1016/s0306-4522(98)00744-1
Kim HY, Seo K, Jeon HJ, Lee U, Lee H (2017). Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol Cells 40(8): 523-532. DOI: 10.14348/molcells.2017.0153.
pubmed: 28835022
doi: 10.14348/molcells.2017.0153
Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL (2014). Cortical control of normal gait and precision stepping: an fNIRS study. Neuroimage 85: 415-422. DOI: 10.1016/j.neuroimage.2013.04.070.
pubmed: 23631980
doi: 10.1016/j.neuroimage.2013.04.070
Krupicka R, Viteckova S, Cejka V, Klempir O, Szabo Z, Ruzicka E (2017). BradykAn: A motion capture system for objectification of hand motor tests in Parkinson Disease. 2017 E-Health and Bioengineering Conference (EHB): 446-449. DOI: 10.1109/EHB.2017.7995457.
doi: 10.1109/EHB.2017.7995457
Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, Frackowiak R (1997). Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 42(3): 283-291. DOI: 10.1002/ana.410420303.
pubmed: 9307248
doi: 10.1002/ana.410420303
Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N, et al. (2016). The role of the frontal lobe in complex walking among patients with Parkinson's Disease and healthy older adults: an fNIRS study. Neurorehabil Neural Repair 30(10): 963-971. DOI: 10.1177/1545968316650426.
pubmed: 27221042
doi: 10.1177/1545968316650426
Martinu K, Nagano-Saito A, Fogel S, Monchi O (2014). Asymmetrical effect of levodopa on the neural activity of motor regions in PD. PLoS One 9(11): e111600. DOI: 10.1371/journal.pone.0111600.
pubmed: 25369523
doi: 10.1371/journal.pone.0111600
Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, et al. (2001). Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14(5): 1186-1192. DOI: 10.1006/nimg.2001.0905.
pubmed: 11697950
doi: 10.1006/nimg.2001.0905
Morishita T, Higuchi M, Saita K, Tsuboi Y, Abe H, Inoue T (2016). Changes in motor-related cortical activity following deep brain stimulation for Parkinson's Disease detected by functional near infrared spectroscopy: a pilot study. Front Hum Neurosci 10: 629. DOI: 10.3389/fnhum.2016.00629.
pubmed: 28018196
doi: 10.3389/fnhum.2016.00629
Payoux P, Brefel-Courbon C, Julian A, Durif F, Azulay JP, Blin O, et al. (2007). Motor activity in parkinsonism and levodopa effect: A PET study. J Nucl Med 48(Suppl. 2): 8P.
Perrey S (2014). Possibilities for examining the neural control of gait in humans with fNIRS. Front Physiol 5: 204. DOI: 10.3389/fphys.2014.00204.
pubmed: 24904433
doi: 10.3389/fphys.2014.00204
Peterson DS, Pickett KA, Duncan RP, Perlmutter JS, Earhart GM (2014). Brain activity during complex imagined gait tasks in Parkinson disease. Clin Neurophysiol 125(5): 995-1005. DOI: 10.1016/j.clinph.2013.10.008.
pubmed: 24210997
doi: 10.1016/j.clinph.2013.10.008
Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, et al. (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage 85: 64-71. DOI: 10.1016/j.neuroimage.2013.06.062.
pubmed: 23810973
doi: 10.1016/j.neuroimage.2013.06.062
Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996). Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16(6): 1250-1254. DOI: 10.1097/00004647-199611000-00020.
pubmed: 8898698
doi: 10.1097/00004647-199611000-00020
Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123(Pt 2): 394-403. DOI: 10.1093/brain/123.2.394.
pubmed: 10648446
doi: 10.1093/brain/123.2.394
Sadato N, Ibañez V, Campbell G, Deiber MP, Le Bihan D, Hallett M (1996). Frequency dependent changes of regional cerebral blood flow during finger movements. J Cereb Blood Flow Metab 16(1): 23-33. DOI: 10.1097/00004647-199601000-00003.
pubmed: 8530552
doi: 10.1097/00004647-199601000-00003
Sakatani K, Katayama Y, Yamamoto T, Suzuki S (1999). Changes in cerebral blood oxygenation of the frontal lobe induced by direct electrical stimulation of thalamus and globus pallidus: a near infrared spectroscopy study. J Neurol Neurosurg Psychiatry 67(6): 769-773. DOI: 10.1136/jnnp.67.6.769.
pubmed: 10567495
doi: 10.1136/jnnp.67.6.769
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, Wolf M (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85: 6-27. DOI: 10.1016/j.neuroimage.2013.05.004.
pubmed: 23684868
doi: 10.1016/j.neuroimage.2013.05.004
Strangman G, Culver JP, Thompson JH, Boas DA (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17(2): 719-731. DOI: 10.1006/nimg.2002.1227.
pubmed: 12377147
doi: 10.1006/nimg.2002.1227
Tak S, Ye JC (2014). Statistical analysis of fNIRS data: A comprehensive review. Neuroimage 85: 72-91. DOI: 10.1016/j.neuroimage.2013.06.016.
pubmed: 23774396
doi: 10.1016/j.neuroimage.2013.06.016
Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA (2008). Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39(3): 1227-1245. DOI: 10.1016/j.neuroimage.2007.10.013.
pubmed: 18042495
doi: 10.1016/j.neuroimage.2007.10.013
Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L (2014). Time domain functional NIRS imaging for human brain mapping. Neuroimage 85: 28-50. DOI: 10.1016/j.neuroimage.2013.05.106.
pubmed: 23747285
doi: 10.1016/j.neuroimage.2013.05.106
Varriale P, Collomb-Clerc A, Van Hamme A, Perrochon A, Kemoun G, Sorrentino G, et al. (2018). Decreasing subthalamic deep brain stimulation frequency reverses cognitive interference during gait initiation in Parkinson's disease. Clin Neurophysiol 129(11): 2482-2491. DOI: 10.1016/j.clinph.2018.07.013.
pubmed: 30100532
doi: 10.1016/j.clinph.2018.07.013
Wilson TW, Kurz MJ, Arpin DJ (2014). Functional specialization within the supplementary motor area: a fNIRS study of bimanual coordination. Neuroimage 85: 445-450. DOI: 10.1016/j.neuroimage.2013.04.112.
pubmed: 23664948
doi: 10.1016/j.neuroimage.2013.04.112
Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011). Functional connectivity of cortical motor areas in the resting state in Parkinson's disease. Hum Brain Mapp 32(9): 1443-1457. DOI: 10.1002/hbm.21118.
pubmed: 20740649
doi: 10.1002/hbm.21118
Xu J, Liu X, Zhang J, Li Z, Wang X, Fang F, Niu H (2015). FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. Biomed Res Int 2015: 248724. DOI: 10.1155/2015/248724.
pubmed: 26539473
doi: 10.1155/2015/248724
Ye J, Tak S, Jang K, Jung J, Jang J (2009). NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44(2): 428-447. DOI: 10.1016/j.neuroimage.2008.08.036.
pubmed: 18848897
doi: 10.1016/j.neuroimage.2008.08.036
Zhang X, Noah JA, Hirsch J (2016). Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3(1): 015004. DOI: 10.1117/1.NPh.3.1.015004.
pubmed: 26866047
doi: 10.1117/1.NPh.3.1.015004