MR compatible ergometers for dynamic
Dynamic 31P magnetic resonance spectroscopy
Exercise
MR ergometer
Muscle examination
Journal
Journal of applied biomedicine
ISSN: 1214-0287
Titre abrégé: J Appl Biomed
Pays: Poland
ID NLM: 101221755
Informations de publication
Date de publication:
Jun 2019
Jun 2019
Historique:
received:
21
01
2019
accepted:
15
04
2019
entrez:
15
12
2021
pubmed:
1
6
2019
medline:
1
6
2019
Statut:
ppublish
Résumé
Magnetic Resonance (MR) compatible ergometers are specialized ergometers used inside the MR scanners for the characterization of tissue metabolism changes during physical stress. They are most commonly used for dynamic phosphorous magnetic resonance spectroscopy (31P MRS), but can also be used for lactate production measurements, perfusion studies using arterial spin labelling or muscle oxygenation measurements by blood oxygen dependent contrast sequences. We will primarily discuss the importance of ergometers in the context of dynamic 31P MRS. Dynamic 31P MRS can monitor muscle fatigue and energy reserve during muscle contractions as well as the dynamics of recuperation of skeletal muscle tissue during the following recovery through signal changes of phosphocreatine (PCr), inorganic phosphate and adenosine triphosphate (ATP). Based on the measured data it is possible to calculate intracellular pH, metabolic flux of ATP through creatine-kinase reaction, anaerobic glycolysis and oxidative phosphorylation and other metabolic parameters as mitochondrial capacity. This review primarily focuses on describing various technical designs of MR compatible ergometers for dynamic 31P MRS that must be constructed with respect to the presence of magnetic field. It is also expected that the construction of ergometers will be easy for the handling and well accepted by examined subjects.
Identifiants
pubmed: 34907736
doi: 10.32725/jab.2019.006
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
91-98Subventions
Organisme : Ministry of Health of the Czech Republic
ID : AZV 15-26906A
Pays : Czech Republic
Organisme : Ministry of Health of the Czech Republic
ID : MHCZ-DRO 00023001
Pays : Czech Republic
Organisme : Ministry of Education, Youth and Sports
ID : 8J18AT023
Pays : Czech Republic
Organisme : Royal Society
ID : 098436/Z/12/B
Pays : United Kingdom
Organisme : Slovak Grant Agencies VEGA
ID : 2/0001/17
Pays : Slovakia
Organisme : APVV
ID : 15-0029
Pays : Slovakia
Déclaration de conflit d'intérêts
The authors report no conflicts of interest in this work.
Références
Anderson JD, Epstein FH, Meyer CH, Hagspiel KD, Wang H, Berr SS, et al. (2009). Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol 54(7): 628-635. DOI: 10.1016/j.jacc.2009.01.080.
pubmed: 19660694
doi: 10.1016/j.jacc.2009.01.080
Argov Z, Löfberg M, Arnold DL (2000). Insights into muscle diseases gained by phosphorus magnetic resonance spectroscopy. Muscle Nerve 23(9): 1316-1334. DOI: 10.1002/1097-4598(200009)23:93.0.CO;2-I.
doi: 10.1002/1097-4598(200009)23:93.0.CO;2-I
Arnold DL, Matthews PM, Radda GK (1984). Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1(3): 307-315. DOI: 10.1002/mrm.1910010303.
pubmed: 6571561
doi: 10.1002/mrm.1910010303
Boss A, Heskamp L, Breukels V, Bains LJ, van Uden MJ, Heerschap A (2018). Oxidative capacity varies along the length of healthy human tibialis anterior. J Physiol 596(8): 1467-1483. DOI: 10.1113/JP275009.
pubmed: 29455454
doi: 10.1113/JP275009
Chance B, Eleff S, Bank W, Leigh JS, Warnell R (1982). 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci U S A 79(24): 7714-7718. DOI: 10.1073/pnas.79.24.7714.
pubmed: 6218501
doi: 10.1073/pnas.79.24.7714
Chance B, Eleff S, Leigh JS (1980). Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sci U S A 77(12): 7430-7434.
pubmed: 6938983
doi: 10.1073/pnas.77.12.7430
Chmelík M, Považan M, Jírů F, Kukurová IJ, Dezortová M, Krššák M, et al. (2014). Flip-angle mapping of 31 P coils by steady-state MR spectroscopic imaging. JMRI 40(2): 391-397. DOI: 10.1002/jmri.24401.
pubmed: 24925600
doi: 10.1002/jmri.24401
Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, et al. (2015). Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 64(2): 383-392. DOI: 10.2337/db14-0765.
pubmed: 25157095
doi: 10.2337/db14-0765
Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L (2015). Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: A potential mechanism for diastolic dysfunction. Eur Heart J 36(24): 1547-1554. DOI: 10.1093/eurheartj/ehv120.
pubmed: 25990345
doi: 10.1093/eurheartj/ehv120
Duteil S, Bourrilhon C, Raynaud JS, Wary C, Richardson RS, Leroy-Willig A, et al. (2004). Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study. Am J Physiol Integr Comp Physiol 287(6): R1441-R1449. DOI: 10.1152/ajpregu.00242.2004.
pubmed: 15528402
doi: 10.1152/ajpregu.00242.2004
Francescato MP, Cettolo V (2001). Two-pedal ergometer for in vivo MRS studies of human calf muscles. Magn Reson Med 46(5): 1000-1005. DOI: 10.1002/mrm.1287.
pubmed: 11675653
doi: 10.1002/mrm.1287
Goluch S, Kuehne A, Meyerspeer M, Kriegl R, Schmid AI, Fiedler GB, et al. (2015). A form-fitted three channel 31P, two channel 1H transceiver coil array for calf muscle studies at 7 T. Magn Reson Med 73(6): 2376-2389. DOI: 10.1002/mrm.25339.
pubmed: 25046817
doi: 10.1002/mrm.25339
González de Suso JM, Bernús G, Alonso J, Alay A, Capdevila A, Gili J, et al. (1993). Development and characterization of an ergometer to study the bioenergetics of the human quadriceps muscle by 31P NMR spectroscopy inside a standard MR scanner. Magn Reson Med 29(4): 575-581. DOI: 10.1002/mrm.1910290425.
pubmed: 8464378
doi: 10.1002/mrm.1910290425
Greiner A, Esterhammer R, Messner H, Biebl M, Mühlthaler H, Fraedrich G, et al. (2006). High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 43(5): 978-986. DOI: 10.1016/j.jvs.2006.01.020.
pubmed: 16678693
doi: 10.1016/j.jvs.2006.01.020
Gussew A, Hiepe P, Rzanny R, Reichenbach JR (2012). Improved reproducibility of dynamic 31P-MRS in the calf muscle during exercise by self-adjusted muscle activity. Biomed Tech 57(SI-1 Track M): 757-760. DOI: 10.1515/bmt-2012-4326.
doi: 10.1515/bmt-2012-4326
Gusso S, Salvador C, Hofman P, Cutfield W, Baldi JC, Taberner A, Nielsen P (2012). Design and testing of an MRI-compatible cycleergometer for non-invasive cardiac assessments during exercise. Biomed Eng Online 11: 13. DOI: 10.1186/1475-925X-11-13.
pubmed: 22423637
doi: 10.1186/1475-925X-11-13
Hiepe P, Gussew A, Rzanny R, Anders C, Walther M, Scholle H-C, Reichenbach JR (2014). Interrelations of muscle functional MRI, diffusion-weighted MRI and 31P-MRS in exercised lower back muscles. NMR Biomed 27(8): 958-970. DOI: 10.1002/nbm.3141.
pubmed: 24953438
doi: 10.1002/nbm.3141
Hosseini Ghomi R, Bredella MA, Thomas BJ, Miller KK, Torriani M (2011). Modular MR-compatible lower leg exercise device for whole-body scanners. Skeletal Radiol 40(10): 1349-1354. DOI: 10.1007/s00256-011-1098-2.
pubmed: 21271342
doi: 10.1007/s00256-011-1098-2
Itoh M, Iio M, Kawai M, Takizawa O, Yoshikawa K, Minami M (1986). 31P-NMR spectroscopy of myopathies: clinical application of whole-body MR. Radiat Med 4(2): 41-45.
Jeneson JA, Schmitz JP, Hilbers PA, Nicolay K (2009). An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing. Magn Reson Med 63(1): 257-261. DOI: 10.1002/mrm.22179.
pubmed: 19918886
doi: 10.1002/mrm.22179
Jeppesen TD, Quistorff B, Wibrand F, Vissing J (2007). 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy. J Neurol 254(1): 29-37. DOI: 10.1007/s00415-006-0229-5.
pubmed: 17278044
doi: 10.1007/s00415-006-0229-5
Kemp GJ, Radda GK (1994). Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10(1): 43-63.
pubmed: 8161485
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ (2015). Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol 213(1): 107-144. DOI: 10.1111/apha.12307.
pubmed: 24773619
doi: 10.1111/apha.12307
Kemp GJ, Meyerspeer M, Moser E (2007). Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20(6): 555-565. DOI: 10.1002/nbm.1192.
pubmed: 17628042
doi: 10.1002/nbm.1192
Kemp GJ, Roberts N, Bimson WE, Bakran A, Harris PL, Gilling-Smith GL (2001). Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: a combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo. J Vasc Surg 34(6): 1103-1110. DOI: 10.1067/mva.2001.117152.
pubmed: 11743568
doi: 10.1067/mva.2001.117152
Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993). Cellular energetics of dystrophic muscle. J Neurol Sci 116(2): 201-206. DOI: 10.1016/0022-510X(93)90326-T.
pubmed: 8393092
doi: 10.1016/0022-510X(93)90326-T
Kimura N, Hamaoka T, Kurosawa Y, Katsumura T (2006). Contribution of intramuscular oxidative metabolism to total ATP production during forearm isometric exercise at varying intensities. Tohoku J Exp Med 208(4): 307-320. DOI: 10.1620/tjem.208.307.
pubmed: 16565593
doi: 10.1620/tjem.208.307
Larson DE, Hesslink RL, Hrovat MI, Fishman RS, Systrom DM (1994). Dietary effects on exercising muscle metabolism and performance by 31P-MRS. J Appl Physiol 77(3): 1108-1115. DOI: 10.1152/jappl.1994.77.3.1108.
pubmed: 7836111
doi: 10.1152/jappl.1994.77.3.1108
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef J-P, Perrey S, et al. (2009). Reproducibility assessment of metabolic variables characterizing muscle energetics in vivo: A 31P-MRS study. Magn Reson Med 62(4): 840-854. DOI: 10.1002/mrm.22085.
pubmed: 19725136
doi: 10.1002/mrm.22085
Layec G, Bringard A, Vilmen C, Micallef JP, Fur Y, Perrey S, et al. (2008). Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. Magn Reson Mater Physics Biol Med 21(3): 227-235. DOI: 10.1007/s10334-008-0117-3.
pubmed: 18483819
doi: 10.1007/s10334-008-0117-3
Le TT, Bryant JA, Ting AE, Ho PY, Su B, Teo RC, et al. (2017). Assessing exercise cardiac reserve using real-time cardiovascular magnetic resonance. J Cardiovasc Magn Reson 19(7) 1-10. DOI: 10.1186/s12968-017-0322-1.
pubmed: 28110638
doi: 10.1186/s12968-017-0322-1
Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, et al. (2016). Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 37(46): 3461-3469. DOI: 10.1093/eurheartj/ehv442.
pubmed: 26392437
doi: 10.1093/eurheartj/ehv442
Lodi R, Kemp GJ, Muntoni F, Thompson CH, Rae C, Taylor J, et al. (1999). Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 122(Pt 1): 121-130.
pubmed: 10050900
doi: 10.1093/brain/122.1.121
Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992). Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85(4): 1364-1373. DOI: 10.1161/01.CIR.85.4.1364.
pubmed: 1555280
doi: 10.1161/01.CIR.85.4.1364
Mattei JP, Bendahan D, Cozzone P (2004). P-31 Magnetic Resonance Spectroscopy. A tool for diagnostic purposes and pathophysiological insights in muscle diseases. Reumatismo 56(1): 9-14. DOI: 10.4081/reumatismo.2004.9.
pubmed: 15105904
doi: 10.4081/reumatismo.2004.9
Mayhew JL, Johnson BD, LaMonte MJ, Lauber D, Kemmler W (2008). Accuracy of prediction equations for determining one repetition maximum bench press in women before and after resistance training. J Strength Cond Res 22(5): 1570-1577. DOI: 10.1519/JSC.0b013e31817b02ad.
pubmed: 18714230
doi: 10.1519/JSC.0b013e31817b02ad
Meyerspeer M, Krššák M, Kemp GJ, Roden M, Moser E (2005). Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magn Reson Mater Physics Biol Med 18(5): 257-262. DOI: 10.1007/s10334-005-0014-y.
pubmed: 16320091
doi: 10.1007/s10334-005-0014-y
Minotti JR, Johnson EC, Hudson TL, Sibbitt RR, Wise LE, Fukushima E, Icenogle MV (1989). Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise. J Appl Physiol 67(1): 324-329. DOI: 10.1152/jappl.1989.67.1.324.
pubmed: 2759961
doi: 10.1152/jappl.1989.67.1.324
Moll K, Gussew A, Nisser M, Derlien S, Krämer M, Reichenbach JR (2018). Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice 31P-MR spectroscopic sequence. NMR Biomed 31(4): e3889. DOI: 10.1002/nbm.3889.
pubmed: 29393546
doi: 10.1002/nbm.3889
Naimon ND, Walczyk J, Babb JS, Khegai O, Che X, Alon L, et al. (2017). A low-cost Mr compatible ergometer to assess post-exercise phosphocreatine recovery kinetics.MAGMA 30(3): 281-289. DOI: 10.1007/s10334-016-0605-9.
pubmed: 28054143
doi: 10.1007/s10334-016-0605-9
Niess F, Fiedler GB, Schmid AI, Goluch S, Kriegl R, Wolzt M, et al. (2017). Interleaved multivoxel (31) P MR spectroscopy. Magn Reson Med 77(3): 921-927. DOI: 10.1002/mrm.26172.
pubmed: 26914656
doi: 10.1002/mrm.26172
Niess F, Fiedler GB, Schmid AI, Laistler E, Frass-Kriegl R, Wolzt M, et al. (2018). Dynamic multivoxel-localized 31P MRS during plantar flexion exercise with variable knee angle. NMR Biomed 31(6): e3905. DOI: 10.1002/nbm.3905.
pubmed: 29578260
doi: 10.1002/nbm.3905
Nishida A, Kubo K, Nihei H (1991). Impaired muscle energy metabolism in uremia as monitored by 31P-NMR. Nihon Jinzo Gakkai Shi 33(1): 65-73.
pubmed: 2038134
Quistorff B, Nielsen S, Thomsen C, Jensen KE, Henriksen O (1990). A simple calf muscle ergometer for use in a standard whole-body MR scanner. Magn Reson Med 13(3): 444-449. DOI: 10.1002/mrm.1910130311.
pubmed: 2325544
doi: 10.1002/mrm.1910130311
Raymer GH, Allman BL, Rice CL, Marsh GD, Thompson RT (2006). Characteristics of a MR-compatible ankle exercise ergometer for a 3.0 T head-only MR scanner. Med Eng Phys 28(5): 489-494. DOI: 10.1016/j.medengphy.2005.07.021.
pubmed: 16162418
doi: 10.1016/j.medengphy.2005.07.021
Rodenburg JB, de Boer RW, Jeneson JA, van Echteld CJ, Bar PR (1994). 31P-MRS and simultaneous quantification of dynamic human quadriceps exercise in a whole body MR scanner. J Appl Physiol 77(2): 1021-1029. DOI: 10.1152/jappl.1994.77.2.1021.
pubmed: 8002487
doi: 10.1152/jappl.1994.77.2.1021
Ryschon TW, Fowler MD, Arai AA, Wysong RE, Leighton SB, Clem TR, Balaban RS (1995). A multimode dynamometer for in vivo MRS studies of human skeletal muscle. J Appl Physiol 79(6): 2139-2147. DOI: 10.1152/jappl.1995.79.6.2139.
pubmed: 8847284
doi: 10.1152/jappl.1995.79.6.2139
Sairyo K, Iwanaga K, Yoshida N, Mishiro T, Terai T, Sasa T, Ikata T (2003). Effects of active recovery under a decreasing work load following intense muscular exercise on intramuscular energy metabolism. Int J Sports Med 24(3): 179-182. DOI: 10.1055/s-2003-39091.
pubmed: 12740735
doi: 10.1055/s-2003-39091
Schaefer LV, Bittmann FN (2017). Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function. BMC Sports Sci Med Rehabil 9: 11. DOI: 10.1186/s13102-017-0075-z.
pubmed: 28503309
doi: 10.1186/s13102-017-0075-z
Schmid AI, Schewzow K, Fiedler GB, Goluch S, Laistler E, Wolzt M, et al. (2014). Exercising calf muscle T2* changes correlate with pH, PCr recovery and maximum oxidative phosphorylation. NMR Biomed 27(5): 553-560. DOI: 10.1002/nbm.3092.
pubmed: 24610788
doi: 10.1002/nbm.3092
Šedivý P, Kipfelsberger MC, Dezortová M, Krššák M, Drobný M, Chmelík M, et al. (2015). Dynamic 31 P MR spectroscopy of plantar flexion: Influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design. Med Phys 42(4): 1678-1689. DOI: 10.1118/1.4914448.
pubmed: 25832057
doi: 10.1118/1.4914448
Sinha S, Shin DD, Hodgson JA, Kinugasa R, Edgerton VR (2012). Computer-controlled, MR-compatible foot-pedal device to study dynamics of the muscle tendon complex under isometric, concentric, and eccentric contractions. J Magn Reson Imaging 36(2): 498-504. DOI: 10.1002/jmri.23617.
pubmed: 22392816
doi: 10.1002/jmri.23617
Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA (2006). A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. NMR Biomed 19(5): 573-580. DOI: 10.1002/nbm.1037.
pubmed: 16642462
doi: 10.1002/nbm.1037
Sleigh A, Lupson V, Thankamony A, Dunger DB, Savage DB, Carpenter TA, Kemp GJ (2016). Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy. Sci Rep 6: 19057. DOI: 10.1038/srep19057.
pubmed: 26751849
doi: 10.1038/srep19057
Táborský P, Sotorník I, Kaslíková J, Schück O, Hájek M, Horská A (1993). 31P magnetic resonance spectroscopy investigation of skeletal muscle metabolism in uraemic patients. Nephron 65(2): 222-226. DOI: 10.1159/000187478.
pubmed: 8247184
doi: 10.1159/000187478
Tschiesche K, Rothamel M, Rzanny R, Gussew A, Hiepe P, Reichenbach JR (2014). MR-compatible pedal ergometer for reproducible exercising of the human calf muscle. Med Eng Phys 36(7): 933-937. DOI: 10.1016/j.medengphy.2014.02.026.
pubmed: 24703504
doi: 10.1016/j.medengphy.2014.02.026
Valkovič L, Chmelík M, Just Kukurová I, Jakubová M, Kipfelsberger MC, Krumpolec P, et al. (2014). Depth-resolved surface coil MRS (DRESS)-localized dynamic 31P-MRS of the exercising human gastrocnemius muscle at 7 T. NMR Biomed 27(11): 1346-1352. DOI: 10.1002/nbm.3196.
pubmed: 25199902
doi: 10.1002/nbm.3196
Valkovič L, Chmelík M, Krššák M (2017a). In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 529: 193-215. DOI: 10.1016/j.ab.2017.01.018.
pubmed: 28119063
doi: 10.1016/j.ab.2017.01.018
Valkovič L, Dragonu I, Almujayyaz S, Batzakis A, Young LA, Purvis LA, et al. (2017b). Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T. PLoS One 1: e0187153. DOI: 10.1371/journal.pone.0187153.
pubmed: 29073228
doi: 10.1371/journal.pone.0187153
Valkovič L, Chmelík M, Meyerspeer M, Gagoski B, Rodgers CT, Krššák M (2016). Dynamic 31P-MRSI using spiral spectroscopic imaging can map mitochondrial capacity in muscles of the human calf during plantar flexion exercise at 7 T. NMR Biomed 29(12): 1825-1834. DOI: 10.1002/nbm.3662.
pubmed: 27862510
doi: 10.1002/nbm.3662
Valkovič L, Ukropcová B, Chmelík M, Baláž M, Bogner W, Schmid AI, et al. (2013). Interrelation of 31P-MRS metabolism measurements in resting and exercised quadriceps muscle of overweight-to-obese sedentary individuals. NMR Biomed 26(12): 1714-1722. DOI: 10.1002/nbm.3008.
pubmed: 23949699
doi: 10.1002/nbm.3008
Vanderthommen M, Gilles R, Carlier P, Ciancabilla F, Zahlan O, Sluse F, Crielaard J (1999). Human muscle energetics during voluntary and electrically induced isometric contractions as measured by 31P NMR spectroscopy. Int J Sports Med 20(5): 279-283. DOI: 10.1055/s-2007-971131.
pubmed: 10452223
doi: 10.1055/s-2007-971131
Wary C, Nadaj-Pakleza A, Laforêt P, Claeys KG, Carlier R, Monnet A, et al. (2010). Investigating glycogenosis type III patients with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord 20(8): 548-558. DOI: 10.1016/j.nmd.2010.06.011.
pubmed: 20620060
doi: 10.1016/j.nmd.2010.06.011
Whipp BJ, Rossiter HB, Ward SA, Avery D, Doyle VL, Howe FA, Griffiths JR (1999). Simultaneous determination of muscle 31P and O2 uptake kinetics during whole body NMR spectroscopy. J Appl Physiol 86(2): 742-747. DOI: 10.1152/jappl.1999.86.2.742.
pubmed: 9931216
doi: 10.1152/jappl.1999.86.2.742
Wilson JR, McCully KK, Mancini DM, Boden B, Chance B (1988). Relationship of muscular fatigue to pH and diprotonated Pi in humans: a 31P-NMR study. J Appl Physiol 64(6): 2333-2339. DOI: 10.1152/jappl.1988.64.6.2333.
pubmed: 3403417
doi: 10.1152/jappl.1988.64.6.2333
Zatina MA, Berkowitz HD, Gross GM, Maris JM, Chance B (1986). 31P nuclear magnetic resonance spectroscopy: noninvasive biochemical analysis of the ischemic extremity. J Vasc Surg 3(3): 411-420. DOI: 10.1016/0741-5214(86)90103-5.
doi: 10.1016/0741-5214(86)90103-5