Direct limits for scalar field dark matter from a gravitational-wave detector.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
12
03
2021
accepted:
16
09
2021
entrez:
16
12
2021
pubmed:
17
12
2021
medline:
17
12
2021
Statut:
ppublish
Résumé
The nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape
Identifiants
pubmed: 34912085
doi: 10.1038/s41586-021-04031-y
pii: 10.1038/s41586-021-04031-y
pmc: PMC8674151
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
424-428Informations de copyright
© 2021. The Author(s).
Références
Bertone, G. & Tait, T. M. P. A new era in the search for dark matter. Nature 562, 51–56 (2018).
doi: 10.1038/s41586-018-0542-z
Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 91, 015015 (2015).
doi: 10.1103/PhysRevD.91.015015
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
doi: 10.1038/nphys3137
Stadnik, Y. V. & Flambaum, V. V. Can dark matter induce cosmological evolution of the fundamental constants of nature? Phys. Rev. Lett. 115, 201301 (2015).
doi: 10.1103/PhysRevLett.115.201301
Van Tilburg, K., Leefer, N., Bougas, L. & Budker, D. Search for ultralight scalar dark matter with atomic spectroscopy. Phys. Rev. Lett. 115, 011802 (2015).
doi: 10.1103/PhysRevLett.115.011802
Hees, A., Guéna, J., Abgrall, M., Bize, S. & Wolf, P. Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons. Phys. Rev. Lett. 117, 061301 (2016).
doi: 10.1103/PhysRevLett.117.061301
Leefer, N., Gerhardus, A., Budker, D., Flambaum, V . V. & Stadnik, Y. V. Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles. Phys. Rev. Lett. 117, 271601 (2016).
doi: 10.1103/PhysRevLett.117.271601
Savalle, E. et al. Searching for dark matter with an unequal delay interferometer. Phys. Rev. Lett. 126, 051301 (2021).
Abbott, B. P. et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).
Abbott, B. P. et al. GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Pys. Rev. X, 11, 021053 (2021).
Bertone, G. et al. Gravitational wave probes of dark matter: challenges and opportunities. SciPost Phys. Core 3, 7 (2020).
doi: 10.21468/SciPostPhysCore.3.2.007
Grote, H. On the possibility of vacuum QED measurements with gravitational wave detectors. Phys. Rev. D 91, 022002 (2015).
doi: 10.1103/PhysRevD.91.022002
Chou, A. S. et al. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers. Phys. Rev. Lett. 117, 111102 (2016).
doi: 10.1103/PhysRevLett.117.111102
Verlinde, E. P. & Zurek, K. M. Observational signatures of quantum gravity in interferometers. Phys. Lett. B 822, 136663 (2021).
Vermeulen, S. M. et al. An experiment for observing quantum gravity phenomena using twin table-top 3D interferometers. Class. Quantum Gravity 38, 085008 (2021).
doi: 10.1088/1361-6382/abe757
Grote, H. & Stadnik, Y. V. Novel signatures of dark matter in laser-interferometric gravitational-wave detectors. Phys. Rev. Res. 1, 033187 (2019).
doi: 10.1103/PhysRevResearch.1.033187
Pierce, A., Riles, K. & Zhao, Y. Searching for dark photon dark matter with gravitational wave detectors. Phys. Rev. Lett. 121, 061102 (2018).
doi: 10.1103/PhysRevLett.121.061102
Hall, E. D., Adhikari, R. X., Frolov, V. V., Müller, H. & Pospelov, M. Laser interferometers as dark matter detectors. Phys. Rev. D 98, 083019 (2018).
doi: 10.1103/PhysRevD.98.083019
Guo, H.-K., Riles, K., Yang, F.-W. & Zhao, Y. Searching for dark photon dark matter in LIGO O1 data. Commun. Phys. 2, 155 (2019).
doi: 10.1038/s42005-019-0255-0
Read, J. I. The local dark matter density. J. Phys. G Nucl. Part. Phys. 41, 063101 (2014).
Derevianko, A. Detecting dark matter waves with precision measurement tools. Phys. Rev. A 97, 042506 (2018).
doi: 10.1103/PhysRevA.97.042506
Flacke, T., Frugiuele, C., Fuchs, E., Gupta, R. S. & Perez, G. Phenomenology of relaxion-Higgs mixing. J. High Energy Phys. 2017, 50 (2017).
doi: 10.1007/JHEP06(2017)050
Banerjee, A., Kim, H. & Perez, G. Coherent relaxion dark matter. Phys. Rev. D 100, 115026 (2019).
doi: 10.1103/PhysRevD.100.115026
Banerjee, A., Budker, D., Eby, J., Kim, H. & Perez, G. Relaxion stars and their detection via atomic physics. Commun. Phys., 3, 1 (2020).
doi: 10.1038/s42005-019-0260-3
Ringwald, A. Exploring the role of axions and other WISPs in the dark universe. Phys. Dark Universe 1. 116-135 (2012).
Hees, A., Minazzoli, O., Savalle, E., Stadnik, Y. V. & Wolf, P. Violation of the equivalence principle from light scalar dark matter. Phys. Rev. D 98, 064051 (2018).
doi: 10.1103/PhysRevD.98.064051
Damour, T. & Polyakov, A. M. The string dilation and a least coupling principle. Nucl. Phys. B 423, 532–558 (1994).
doi: 10.1016/0550-3213(94)90143-0
Arvanitaki, A., Dimopoulos, S. & Van Tilburg, K. Sound of dark matter: searching for light scalars with resonant-mass detectors. Phys. Rev. Lett. 116, 031102 (2016).
doi: 10.1103/PhysRevLett.116.031102
Damour, T. & Donoghue, J. F. Equivalence principle violations and couplings of a light dilaton. Phys. Rev. D 82, 084033 (2010).
doi: 10.1103/PhysRevD.82.084033
Geraci, A. A., Bradley, C., Gao, D., Weinstein, J. & Derevianko, A. Searching for ultra-light dark matter with optical cavities. Phys. Rev. Lett. 123, 031304 (2019).
doi: 10.1103/PhysRevLett.123.031304
Lough, J. et al. First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory. Phys. Rev. Lett. 126, 041102 (2021).
doi: 10.1103/PhysRevLett.126.041102
Dooley, K. L. et al. GEO 600 and the GEO-HF upgrade program: successes and challenges. Class. Quantum Gravity 33, 075009 (2016).
doi: 10.1088/0264-9381/33/7/075009
Tröbs, M. & Heinzel, G. Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement 39, 120–129 (2006); corrigendum 42, 170 (2009).
doi: 10.1016/j.measurement.2005.10.010
Miller, A. L. et al. Adapting a semi-coherent method to directly detect dark photon dark matter interacting with gravitational-wave interferometers. Phys. Rev. D. 103, 103002 (2021).
Abbott, B. P. et al. Properties of the binary neutron star merger GW170817. Phys. Rev. X 9, 011001 (2019).
Freese, K., Lisanti, M. & Savage, C. Annual modulation of dark matter: A review. Rev. Mod. Phys. 85, 1561–1581 (2013).
doi: 10.1103/RevModPhys.85.1561
Wagner, T. A., Schlamminger, S., Gundlach, J. H. & Adelberger, E. G. Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29, 184002 (2012).
doi: 10.1088/0264-9381/29/18/184002
Aharony, S. et al. Constraining rapidly oscillating scalar dark matter using dynamic decoupling. Phys. Rev. D 103, 075017 (2019).
Antypas, D. et al. Scalar dark matter in the radio-frequency band: atomic-spectroscopy search results. Phys. Rev. Lett. 123, 141102 (2019).
doi: 10.1103/PhysRevLett.123.141102
Branca, A. et al. Search for an ultralight scalar dark matter candidate with the AURIGA detector. Phys. Rev. Lett. 118, 021302 (2017).
doi: 10.1103/PhysRevLett.118.021302
Smith, G. L. et al. Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001 (1999).
doi: 10.1103/PhysRevD.61.022001
Schlamminger, S., Choi, K.-Y., Wagner, T. A., Gundlach, J. H. & Adelberger, E. G. Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett. 100, 041101 (2008).
doi: 10.1103/PhysRevLett.100.041101
Bergé, J. et al. MICROSCOPE mission: first constraints on the violation of the weak equivalence principle by a light scalar dilaton. Phys. Rev. Lett. 120, 141101 (2018).
doi: 10.1103/PhysRevLett.120.141101
Pradyumna, S. T. et al. Twin beam quantum-enhanced correlated interferometry for testing fundamental physics. Commun. Phys. 3, 104 (2020).
doi: 10.1038/s42005-020-0368-5
Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).
doi: 10.1103/PhysRevLett.125.201302
Savalle, E. et al. Novel approaches to dark-matter detection using space-time separated clocks. Preprint at https://arxiv.org/abs/1902.07192 (2019).
Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).
doi: 10.1109/TAU.1967.1161901