A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target.


Journal

Laboratory investigation; a journal of technical methods and pathology
ISSN: 1530-0307
Titre abrégé: Lab Invest
Pays: United States
ID NLM: 0376617

Informations de publication

Date de publication:
04 2022
Historique:
received: 16 08 2021
accepted: 19 11 2021
revised: 07 11 2021
pubmed: 19 12 2021
medline: 12 4 2022
entrez: 18 12 2021
Statut: ppublish

Résumé

Osteosarcoma is a high-grade bone-forming neoplasm, with a complex genome. Tumours frequently show chromothripsis, many deletions, translocations and copy number alterations. Alterations in the p53 or Rb pathway are the most common genetic alterations identified in osteosarcoma. Using spontaneously transformed murine mesenchymal stem cells (MSCs) which formed sarcoma after subcutaneous injection into mice, it was previously demonstrated that p53 is most often involved in the transformation towards sarcomas with complex genomics, including osteosarcoma. In the current study, not only loss of p53 but also loss of p16

Identifiants

pubmed: 34921235
doi: 10.1038/s41374-021-00709-z
pii: S0023-6837(22)00052-6
pmc: PMC8964417
doi:

Substances chimiques

Cyclin-Dependent Kinase Inhibitor p16 0
Tumor Suppressor Protein p14ARF 0
Tumor Suppressor Protein p53 0
CDK4 protein, human EC 2.7.11.22
CDK6 protein, human EC 2.7.11.22
Cyclin-Dependent Kinase 4 EC 2.7.11.22
Cyclin-Dependent Kinase 6 EC 2.7.11.22

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

391-400

Informations de copyright

© 2021. The Author(s).

Références

Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).
doi: 10.1038/ncomms15936
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).
doi: 10.1016/j.cell.2010.11.055
Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).
doi: 10.1038/s41588-019-0576-7
Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).
pubmed: 25512523 pmcid: 4280630
Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).
doi: 10.1038/ncomms9940
Weinberg, R. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
doi: 10.1016/0092-8674(95)90385-2
Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019).
pubmed: 30266815
Mejia-Guerrero, S., et al. Characterization of the 12q15MDM2and 12q13-14CDK4amplicons and clinical correlations in osteosarcoma. Genes Chromosom. Cancer https://doi.org/10.1002/gcc.20761 , NA-NA (2010).
Burkhart, D. L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).
doi: 10.1038/nrc2399
Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).
doi: 10.1016/S0959-437X(99)00038-6
Miller, C. W. et al. Alterations of the p15, p16 and p18 Genes in Osteosarcoma. Cancer Genet. Cytogenet. 86, 136–142 (1996).
doi: 10.1016/0165-4608(95)00216-2
Tsuchiya, T. et al. Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 Genes and Their Prognostic Implications in Osteosarcoma and Ewing Sarcoma. Cancer Genet. Cytogenet. 120, 91–98 (2000).
doi: 10.1016/S0165-4608(99)00255-1
Mohseny, A. B. et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J. Pathol. 219, 294–305 (2009).
doi: 10.1002/path.2603
Righi, A. et al. p16 expression as a prognostic and predictive marker in high-grade localized osteosarcoma of the extremities: an analysis of 357 cases. Hum. Pathol. 58, 15–23 (2016).
doi: 10.1016/j.humpath.2016.07.023
Kosemehmetoglu, K., Ardic, F., Karslioglu, Y., Kandemir, O. & Ozcan, A. p16 expression predicts neoadjuvant tumor necrosis in osteosarcomas: reappraisal with a larger series using whole sections. Hum. Pathol. 50, 170–175 (2016).
doi: 10.1016/j.humpath.2015.09.043
Bu, J., et al. P16Ink4a overexpression and survival in osteosarcoma patients: a meta analysis. Int. J. Clin. Exp. Pathol. 7, 6091–6096 (2014).
Borys, D. et al. P16 expression predicts necrotic response among patients with osteosarcoma receiving neoadjuvant chemotherapy. Hum. Pathol. 43, 1948–1954 (2012).
doi: 10.1016/j.humpath.2012.02.003
Maitra, A., Roberts, H., Weinberg, A. & Geradts, J. Loss of p16ink4a expression correlates with decreased survival in pediatric osteosarcomas. Int. J. Cancer 95, 34–8 (2001).
Franceschini, N., et al. Transformed murine and canine mesenchymal stem cells as a model for sarcoma with complex genomics. Cancers 13, 1126 (2021).
Krimpenfort, P. et al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448, 943–946 (2007).
doi: 10.1038/nature06084
Ottaviano, L. et al. Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosom. Cancer 49, 40–51 (2010).
doi: 10.1002/gcc.20717
Zhang, W. et al. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: how to reliably produce a biomimetic 3D model. Anal. Biochem. 515, 47–54 (2016).
doi: 10.1016/j.ab.2016.10.004
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016).
WHO Classification of Tumours of Soft Tissue and Bone 5th edn, Vol. 3 (WHO Classification of Tumours Editorial Board, 2020).
Mohseny, A. B. et al. Small deletions but not methylation underlie CDKN2A/p16 loss of expression in conventional osteosarcoma. Genes Chromosom. Cancer 49, 1095–1103 (2010).
doi: 10.1002/gcc.20817
Buddingh, E. P. et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin. Cancer Res. 17, 2110–2119 (2011).
doi: 10.1158/1078-0432.CCR-10-2047
Schrage, Y. M. et al. Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. J. Cell Mol. Med. 13, 2843–2852 (2009).
doi: 10.1111/j.1582-4934.2008.00406.x
Gong, W. et al. Cyclin-dependent kinase 6 (CDK6) is a candidate diagnostic biomarker for early non-small cell lung cancer. Transl. Cancer Res. 9, 95–103 (2020).
doi: 10.21037/tcr.2019.11.21
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
doi: 10.1038/s41598-017-17204-5
Kresse, S. H. et al. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS ONE 7, e48262 (2012).
doi: 10.1371/journal.pone.0048262
Chow, T., et al. Creating in vitro three-dimensional tumor models: a guide for the biofabrication of a primary osteosarcoma model. Tissue Eng. Part B https://doi.org/10.1089/ten.teb.2020.0254 (2020).
De Luca, A. et al. Relevance of 3d culture systems to study osteosarcoma environment. J. Exp. Clin. Cancer Res. 37, 2 (2018).
doi: 10.1186/s13046-017-0663-5
Gao, S., Shen, J., Hornicek, F. & Duan, Z. Three-dimensional (3D) culture in sarcoma research and the clinical significance. Biofabrication 9, 032003 (2017).
doi: 10.1088/1758-5090/aa7fdb
Sherr, C. J., Beach, D. & Shapiro, G. I. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 6, 353–367 (2016).
doi: 10.1158/2159-8290.CD-15-0894
Guha, M. Cyclin-dependent kinase inhibitors move into Phase III. Nat. Rev. Drug Discov. 11, 892–894 (2012).
doi: 10.1038/nrd3908
Kovac, M., et al. The early evolutionary landscape of osteosarcoma provides clues for targeted treatment strategies. J. Pathol. https://doi.org/10.1002/path.5699 (2021).
Mohseny, A. B., Hogendoorn, P. C. & Cleton-Jansen, A. M. Osteosarcoma models: from cell lines to zebrafish. Sarcoma 2012, 417271 (2012).
doi: 10.1155/2012/417271
Tang, Y., et al. P16 protein expression as a useful predictive biomarker for neoadjuvant chemotherapy response in patients with high-grade osteosarcoma. Medicine 96, e6714 (2017).
Zhou, Y. et al. Expression and therapeutic implications of cyclin-dependent kinase 4 (CDK4) in osteosarcoma. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1573–1582 (2018).
doi: 10.1016/j.bbadis.2018.02.004
Perez, M., Galván, S. M., García, M. P., Marín, J. J. & Carnero, A. Efficacy of CDK4 inhibition against sarcomas depends on their levels of CDK4 and p16ink4 mRNA. Oncotarget 6, 40557–74 (2015).
Gong, X. et al. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE 10, e0130348 (2015).
doi: 10.1371/journal.pone.0130348
Cristofanilli, M. et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 17, 425–439 (2016).
doi: 10.1016/S1470-2045(15)00613-0
Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).
doi: 10.1016/j.cell.2011.08.017
Finn, R. S. et al. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med. 375, 1925–1936 (2016).
doi: 10.1056/NEJMoa1607303
Trial of Palbociclib in Second Line of Advanced Sarcomas With CDK4 Overexpression, https://clinicaltrials.gov/ct2/show/study/NCT03242382 Accessed 18-01-2021.
Abemaciclib for Bone and Soft Tissue Sarcoma With Cyclin-Dependent Kinase (CDK) Pathway Alteration, https://clinicaltrials.gov/ct2/show/NCT04040205 Accessed 18-01-2021.
Pack, L. R., Daigh, L. H., Chung, M. & Meyer, T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat. Commun. 12, 3356 (2021).
doi: 10.1038/s41467-021-23612-z

Auteurs

Natasja Franceschini (N)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Raffaele Gaeta (R)

Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.

Paul Krimpenfort (P)

Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Inge Briaire-de Bruijn (I)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Alwine B Kruisselbrink (AB)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Karoly Szuhai (K)

Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.

Ieva Palubeckaitė (I)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Anne-Marie Cleton-Jansen (AM)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.

Judith V M G Bovée (JVMG)

Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands. j.v.m.g.bovee@lumc.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH