Autophagy and Hepatic Tumor Microenvironment Associated Dormancy.
Autophagy
Dormancy
Liver
Tumor microenvironment
Journal
Journal of gastrointestinal cancer
ISSN: 1941-6636
Titre abrégé: J Gastrointest Cancer
Pays: United States
ID NLM: 101479627
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
accepted:
19
11
2021
pubmed:
19
12
2021
medline:
17
2
2022
entrez:
18
12
2021
Statut:
ppublish
Résumé
The goal of successful cancer treatment is targeting the eradication of cancer cells. Although surgical removal of the primary tumors and several rounds of chemo- and radiotherapy reduce the disease burden, in some cases, asymptomatic dormant cancer cells may still exist in the body. Dormant cells arise from the disseminated tumor cells (DTCs) from the primary lesion. DTCs escape from immune system and cancer therapy and reside at the secondary organ without showing no sign of proliferation. However, under some conditions. dormant cells can be re-activated and enter a proliferative state even after decades. As a stress response mechanism, autophagy may help the adaptation of DTCs at this futile foreign microenvironment and may control the survival and re-activation of dormant cells. Studies indicate that hepatic microenvironment serves a favorable condition for cancer cell dormancy. Although, no direct study was pointing out the role of autophagy in liver-assisted dormancy, involvement of autophagy in both liver microenvironment, health, and disease conditions has been indicated. Therefore, in this review article, we will summarize cancer dormancy and discuss the role and importance of autophagy and hepatic microenvironment in this context.
Identifiants
pubmed: 34921672
doi: 10.1007/s12029-021-00774-z
pii: 10.1007/s12029-021-00774-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1277-1293Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Klein CA. Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev. 2011;21:42–9. https://doi.org/10.1016/j.gde.2010.10.011 .
doi: 10.1016/j.gde.2010.10.011
pubmed: 21145726
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84. https://doi.org/10.1038/s41580-018-0080-4 .
doi: 10.1038/s41580-018-0080-4
Chaffer CL, San Juan BP, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35:645–54. https://doi.org/10.1007/s10555-016-9648-7 .
doi: 10.1007/s10555-016-9648-7
pubmed: 27878502
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120. https://doi.org/10.1038/s41467-020-18794-x .
doi: 10.1038/s41467-020-18794-x
pubmed: 33037194
pmcid: 7547708
Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, Kerjaschki D. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359:1408–11. https://doi.org/10.1126/science.aal3662 .
doi: 10.1126/science.aal3662
pubmed: 29567714
Wyckoff JB, Jones JG, Condeelis JS, Segall JE. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000;60:2504–11.
pubmed: 10811132
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98. https://doi.org/10.1016/j.bbamcr.2013.06.026 .
doi: 10.1016/j.bbamcr.2013.06.026
pubmed: 23830918
Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol. 2012;2012: 306879. https://doi.org/10.1155/2012/306879 .
doi: 10.1155/2012/306879
pubmed: 22505926
pmcid: 3296207
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90. https://doi.org/10.1016/j.cell.2009.11.007 .
doi: 10.1016/j.cell.2009.11.007
pubmed: 19945376
Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.
pubmed: 2673568
Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995;1:149–53. https://doi.org/10.1038/nm0295-149 .
doi: 10.1038/nm0295-149
pubmed: 7585012
Hadfield G. The dormant cancer cell. Br Med J. 1954;2:607–10. https://doi.org/10.1136/bmj.2.4888.607 .
doi: 10.1136/bmj.2.4888.607
pubmed: 13190204
pmcid: 2078920
Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006;5:1744–50. https://doi.org/10.4161/cc.5.16.2864 .
doi: 10.4161/cc.5.16.2864
pubmed: 16861927
Gath HJ, Brakenhoff RH. Minimal residual disease in head and neck cancer. Cancer Metastasis Rev. 1999;18:109–26. https://doi.org/10.1023/a:1006268621730 .
doi: 10.1023/a:1006268621730
pubmed: 10505550
Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19:731–45. https://doi.org/10.1038/s41580-018-0068-0 .
doi: 10.1038/s41580-018-0068-0
pubmed: 30305710
Akkoc Y, Gozuacik D. Autophagy and liver cancer. Turk J Gastroenterol. 2018;29:270–82. https://doi.org/10.5152/tjg.2018.150318 .
doi: 10.5152/tjg.2018.150318
pubmed: 29755011
pmcid: 6284658
Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37. https://doi.org/10.1016/j.ejps.2019.04.011 .
doi: 10.1016/j.ejps.2019.04.011
pubmed: 30981885
Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and cancer dormancy. Front. Oncol. 2021;11: 627023. https://doi.org/10.3389/fonc.2021.627023 .
doi: 10.3389/fonc.2021.627023
Disibio G, French SW. Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med. 2008;132:931–9. https://doi.org/10.1043/1543-2165(2008)132[931:MPOCRF]2.0.CO;25858/2008-132-931-MPOCRF .
doi: 10.1043/1543-2165(2008)132[931:MPOCRF]2.0.CO;25858/2008-132-931-MPOCRF
pubmed: 18517275
Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C, Wolf T, Warth A, Dietel M, Anagnostopoulos I, Weichert W, Wittschieber D, Stenzinger A. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015;6:570–83. https://doi.org/10.18632/oncotarget.2677 .
doi: 10.18632/oncotarget.2677
pubmed: 25402435
Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R, Abbruzzese JL. Metastatic patterns in adenocarcinoma. Cancer. 2006;106:1624–33. https://doi.org/10.1002/cncr.21778 .
doi: 10.1002/cncr.21778
pubmed: 16518827
Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970;31:125–50. https://doi.org/10.1016/s0022-5320(70)90150-4 .
doi: 10.1016/s0022-5320(70)90150-4
pubmed: 5442603
Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985;82:8681–5. https://doi.org/10.1073/pnas.82.24.8681 .
doi: 10.1073/pnas.82.24.8681
pubmed: 3909149
pmcid: 391500
Rockey DC. The molecular basis of portal hypertension. Trans Am Clin Climatol Assoc. 2017;128:330–45.
pubmed: 28790516
pmcid: 5525430
Jungermann K, Kietzmann T. Role of oxygen in the zonation of carbohydrate metabolism and gene expression in liver. Kidney Int. 1997;51:402–12. https://doi.org/10.1038/ki.1997.53 .
doi: 10.1038/ki.1997.53
pubmed: 9027713
Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol. 2017;11:622–30. https://doi.org/10.1016/j.redox.2017.01.012 .
doi: 10.1016/j.redox.2017.01.012
pubmed: 28126520
pmcid: 5257182
Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J. 1995;9:1401–10. https://doi.org/10.1096/fasebj.9.14.7589981 .
doi: 10.1096/fasebj.9.14.7589981
pubmed: 7589981
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75. https://doi.org/10.1038/nature06639 .
doi: 10.1038/nature06639
pubmed: 18305538
pmcid: 2670399
Appelmans F, Wattiaux R, De Duve C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955;59:438–45. https://doi.org/10.1042/bj0590438 .
doi: 10.1042/bj0590438
pubmed: 14363114
pmcid: 1216263
De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60:604–17. https://doi.org/10.1042/bj0600604 .
doi: 10.1042/bj0600604
pmcid: 1216159
Straus W. Rapid cytochemical identification of phagosomes in various tissues of the rat and their differentiation from mitochondria by the peroxidase method. J Biophys Biochem Cytol. 1959;5:193–204. https://doi.org/10.1083/jcb.5.2.193 .
doi: 10.1083/jcb.5.2.193
pubmed: 13654438
pmcid: 2224640
Straus W. Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase and intravenously injected horseradish peroxidase. J Cell Biol. 1964;20:497–507. https://doi.org/10.1083/jcb.20.3.497 .
doi: 10.1083/jcb.20.3.497
pubmed: 14128050
pmcid: 2106412
Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 1962;12:198–202. https://doi.org/10.1083/jcb.12.1.198 .
doi: 10.1083/jcb.12.1.198
pubmed: 13862833
pmcid: 2106008
Novikoff AB, Essner E. Cytolysomes and mitochondrial degeneration. J Cell Biol. 1962;15:140–6. https://doi.org/10.1083/jcb.15.1.140 .
doi: 10.1083/jcb.15.1.140
pubmed: 13939127
pmcid: 2106132
Miller LL. Glucagon: a protein catabolic hormone in the isolated perfused rat liver. Nature. 1960;185:248. https://doi.org/10.1038/185248a0 .
doi: 10.1038/185248a0
pubmed: 14422556
De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–92. https://doi.org/10.1146/annurev.ph.28.030166.002251 .
doi: 10.1146/annurev.ph.28.030166.002251
pubmed: 5322983
Bayraktar O, Oral O, Kocaturk NM, Akkoc Y, Eberhart K, Kosar A, Gozuacik D. IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation. PLoS ONE. 2016;11: e0164864. https://doi.org/10.1371/journal.pone.0164864 .
doi: 10.1371/journal.pone.0164864
pubmed: 27768726
pmcid: 5074563
Peker N, Gozuacik D. Autophagy as a cellular stress response mechanism in the nervous system. J Mol Biol. 2020;432:2560–88. https://doi.org/10.1016/j.jmb.2020.01.017 .
doi: 10.1016/j.jmb.2020.01.017
pubmed: 31962122
Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-Roach AA, Wells CD, Skurat AV, Roach PJ. Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem. 2010;285:34960–71. https://doi.org/10.1074/jbc.M110.150839 .
doi: 10.1074/jbc.M110.150839
pubmed: 20810658
pmcid: 2966110
Jiang S, Wells CD, Roach PJ. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun. 2011;413:420–5. https://doi.org/10.1016/j.bbrc.2011.08.106 .
doi: 10.1016/j.bbrc.2011.08.106
pubmed: 21893048
pmcid: 3411280
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009;458:1131–5. https://doi.org/10.1038/nature07976 .
doi: 10.1038/nature07976
pubmed: 19339967
pmcid: 2676208
Pfeifer U. Inverted diurnal rhythm of cellular autophagy in liver cells of rats fed a single daily meal. Virchows Arch B Cell Pathol. 1972;10:1–3. https://doi.org/10.1007/BF02899710 .
doi: 10.1007/BF02899710
pubmed: 4335746
Naito T, Kuma A, Mizushima N. Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. J Biol Chem. 2013;288:21074–81. https://doi.org/10.1074/jbc.M113.456228 .
doi: 10.1074/jbc.M113.456228
pubmed: 23744068
pmcid: 3774374
Cahill GF Jr. Starvation in man. N Engl J Med. 1970;282:668–75. https://doi.org/10.1056/NEJM197003192821209 .
doi: 10.1056/NEJM197003192821209
pubmed: 4915800
Schworer CM, Shiffer KA, Mortimore GE. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981;256:7652–8.
doi: 10.1016/S0021-9258(19)69010-1
Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E. Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes. J Gerontol A Biol Sci Med Sci. 2001;56:B288–93. https://doi.org/10.1093/gerona/56.7.b288 .
doi: 10.1093/gerona/56.7.b288
pubmed: 11445593
Vittorini S, Paradiso C, Donati A, Cavallini G, Masini M, Gori Z, Pollera M, Bergamini E. The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities. J Gerontol A Biol Sci Med Sci. 1999;54:B318–23. https://doi.org/10.1093/gerona/54.8.b318 .
doi: 10.1093/gerona/54.8.b318
pubmed: 10496537
Kudchodkar SB, Levine B. Viruses and autophagy. Rev Med Virol. 2009;19:359–78. https://doi.org/10.1002/rmv.630 .
doi: 10.1002/rmv.630
pubmed: 19750559
pmcid: 2852112
Brechot C, Gozuacik D, Murakami Y, Paterlini-Brechot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000;10:211–31. https://doi.org/10.1006/scbi.2000.0321 .
doi: 10.1006/scbi.2000.0321
pubmed: 10936070
Gozuacik D, Murakami Y, Saigo K, Chami M, Mugnier C, Lagorce D, Okanoue T, Urashima T, Brechot C, Paterlini-Brechot P. Identification of human cancer-related genes by naturally occurring Hepatitis B Virus DNA tagging. Oncogene. 2001;20:6233–40. https://doi.org/10.1038/sj.onc.1204835 .
doi: 10.1038/sj.onc.1204835
pubmed: 11593432
Levrero M. Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene. 2006;25:3834–47. https://doi.org/10.1038/sj.onc.1209562 .
doi: 10.1038/sj.onc.1209562
pubmed: 16799625
Li J, Liu Y, Wang Z, Liu K, Wang Y, Liu J, Ding H, Yuan Z. Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol. 2011;85:6319–33. https://doi.org/10.1128/JVI.02627-10 .
doi: 10.1128/JVI.02627-10
pubmed: 21507968
pmcid: 3126540
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63. https://doi.org/10.1016/j.cell.2007.10.035 .
doi: 10.1016/j.cell.2007.10.035
pubmed: 18083104
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112:1809–20. https://doi.org/10.1172/JCI20039 .
doi: 10.1172/JCI20039
pubmed: 14638851
pmcid: 297002
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100:15077–82. https://doi.org/10.1073/pnas.2436255100 .
doi: 10.1073/pnas.2436255100
pubmed: 14657337
pmcid: 299911
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64. https://doi.org/10.1016/j.ccr.2006.06.001 .
doi: 10.1016/j.ccr.2006.06.001
pubmed: 16843265
pmcid: 2857533
Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, Chio II, Hwang CI, Tiriac H, Baker LA, Engle DD, Feig C, Kultti A, Egeblad M, Fearon DT, Crawford JM, Clevers H, Park Y, Tuveson DA. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579–96. https://doi.org/10.1084/jem.20162024 .
doi: 10.1084/jem.20162024
pubmed: 28232471
pmcid: 5339682
Shan T, Lu H, Ji H, Li Y, Guo J, Chen X, Wu T. Loss of stromal caveolin-1 expression: a novel tumor microenvironment biomarker that can predict poor clinical outcomes for pancreatic cancer. PLoS ONE. 2014;9: e97239. https://doi.org/10.1371/journal.pone.0097239 .
doi: 10.1371/journal.pone.0097239
pubmed: 24949874
pmcid: 4064978
Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174:2023–34. https://doi.org/10.2353/ajpath.2009.080873 .
doi: 10.2353/ajpath.2009.080873
pubmed: 19411448
pmcid: 2684168
Karakas HE, Kim J, Park J, Oh JM, Choi Y, Gozuacik D, Cho YK. A microfluidic chip for screening individual cancer cells via eavesdropping on autophagy-inducing crosstalk in the stroma niche. Sci Rep. 2017;7:2050. https://doi.org/10.1038/s41598-017-02172-7 .
doi: 10.1038/s41598-017-02172-7
pubmed: 28515430
pmcid: 5435728
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83. https://doi.org/10.1038/nature19084 .
doi: 10.1038/nature19084
pubmed: 27509858
pmcid: 5228623
Spiliotaki M, Mavroudis D, Kapranou K, Markomanolaki H, Kallergi G, Koinis F, Kalbakis K, Georgoulias V, Agelaki S. Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res. 2014;16:485. https://doi.org/10.1186/s13058-014-0485-8 .
doi: 10.1186/s13058-014-0485-8
pubmed: 25432416
pmcid: 4303210
Lwin T, Hazlehurst LA, Dessureault S, Lai R, Bai W, Sotomayor E, Moscinski LC, Dalton WS, Tao J. Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood. 2007;110:1631–8. https://doi.org/10.1182/blood-2006-11-060350 .
doi: 10.1182/blood-2006-11-060350
pubmed: 17502456
pmcid: 1975846
Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev. 2011;25:801–13. https://doi.org/10.1101/gad.2034211 .
doi: 10.1101/gad.2034211
pubmed: 21498570
pmcid: 3078706
Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 2003;63:1684–95.
pubmed: 12670923
Balz LM, Bartkowiak K, Andreas A, Pantel K, Niggemann B, Zanker KS, Brandt BH, Dittmar T. The interplay of HER2/HER3/PI3K and EGFR/HER2/PLC-gamma1 signalling in breast cancer cell migration and dissemination. J Pathol. 2012;227:234–44. https://doi.org/10.1002/path.3991 .
doi: 10.1002/path.3991
pubmed: 22262199
Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirre-Ghiso JA. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol. 2013;15:1351–61. https://doi.org/10.1038/ncb2861 .
doi: 10.1038/ncb2861
pubmed: 24161934
pmcid: 4006312
Dey-Guha I, Alves CP, Yeh AC, Salony SX, Darp R, Ramaswamy S. A mechanism for asymmetric cell division resulting in proliferative asynchronicity. Mol Cancer Res. 2015;13:223–30. https://doi.org/10.1158/1541-7786.MCR-14-0474 .
doi: 10.1158/1541-7786.MCR-14-0474
pubmed: 25582703
pmcid: 4336804
Schewe DM, Aguirre-Ghiso JA. ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A. 2008;105:10519–24. https://doi.org/10.1073/pnas.0800939105 .
doi: 10.1073/pnas.0800939105
pubmed: 18650380
pmcid: 2492459
Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013;13:585–95. https://doi.org/10.1038/nrc3556 .
doi: 10.1038/nrc3556
pubmed: 23842645
pmcid: 3986830
Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, Kourtidis A, Conklin DS, Aguirre-Ghiso JA. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 2009;69:5664–72. https://doi.org/10.1158/0008-5472.CAN-08-3820 .
doi: 10.1158/0008-5472.CAN-08-3820
pubmed: 19584293
pmcid: 2720524
Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–79. https://doi.org/10.1016/j.cell.2012.06.035 .
doi: 10.1016/j.cell.2012.06.035
pubmed: 22901808
pmcid: 3711709
Litchfield LM, Riggs KA, Hockenberry AM, Oliver LD, Barnhart KG, Cai J, Pierce WM Jr, Ivanova MM, Bates PJ, Appana SN, Datta S, Kulesza P, McBryan J, Young LS, Klinge CM. Identification and characterization of nucleolin as a COUP-TFII coactivator of retinoic acid receptor beta transcription in breast cancer cells. PLoS ONE. 2012;7: e38278. https://doi.org/10.1371/journal.pone.0038278 .
doi: 10.1371/journal.pone.0038278
pubmed: 22693611
pmcid: 3365040
Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, Ekpin E, George A, Zheng Y, Lam HM, Morrissey C, Chung CY, Farias EF, Bernstein E, Aguirre-Ghiso JA. NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun. 2015;6:6170. https://doi.org/10.1038/ncomms7170 .
doi: 10.1038/ncomms7170
pubmed: 25636082
Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12:863–79. https://doi.org/10.1091/mbc.12.4.863 .
doi: 10.1091/mbc.12.4.863
pubmed: 11294892
pmcid: 32272
Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, Wilber A, Watabe K. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208:2641–55. https://doi.org/10.1084/jem.20110840 .
doi: 10.1084/jem.20110840
pubmed: 22124112
pmcid: 3244043
Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E, Massague J. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 2016;165:45–60. https://doi.org/10.1016/j.cell.2016.02.025 .
doi: 10.1016/j.cell.2016.02.025
pubmed: 27015306
pmcid: 4808520
Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, Lin C, Peng X, Song L. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428–49. https://doi.org/10.1084/jem.20180661 .
doi: 10.1084/jem.20180661
pubmed: 30593464
pmcid: 6363426
Sharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, Shiozawa Y, Lin HK, Balaji KC, Watabe K. Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J Biol Chem. 2016;291:19351–63. https://doi.org/10.1074/jbc.M116.737379 .
doi: 10.1074/jbc.M116.737379
pubmed: 27422817
pmcid: 5016675
Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010;12:116–27. https://doi.org/10.1593/neo.91384 .
doi: 10.1593/neo.91384
pubmed: 20126470
pmcid: 2814350
Taichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE. 2013;8: e61873. https://doi.org/10.1371/journal.pone.0061873 .
doi: 10.1371/journal.pone.0061873
pubmed: 23637920
pmcid: 3634826
Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, Lee E, Nobre AR, Aguirre-Ghiso JA, Jung Y, Taichman RS. Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep. 2016;6:36520. https://doi.org/10.1038/srep36520 .
doi: 10.1038/srep36520
pubmed: 27819283
pmcid: 5098246
La Belle FA, Calhoun BC, Sharma A, Chang JC, Almasan A, Schiemann WP. Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat Commun. 2019;10:3668. https://doi.org/10.1038/s41467-019-11640-9 .
doi: 10.1038/s41467-019-11640-9
Lu Z, Baquero MT, Yang H, Yang M, Reger AS, Kim C, Levine DA, Clarke CH, Liao WS, Bast RC Jr. DIRAS3 regulates the autophagosome initiation complex in dormant ovarian cancer cells. Autophagy. 2014;10:1071–92. https://doi.org/10.4161/auto.28577 .
doi: 10.4161/auto.28577
pubmed: 24879154
pmcid: 4091169
Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC Jr. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 2008;118:3917–29. https://doi.org/10.1172/JCI35512 .
doi: 10.1172/JCI35512
pubmed: 19033662
pmcid: 2582930
Shimizu T, Sugihara E, Yamaguchi-Iwai S, Tamaki S, Koyama Y, Kamel W, Ueki A, Ishikawa T, Chiyoda T, Osuka S, Onishi N, Ikeda H, Kamei J, Matsuo K, Fukuchi Y, Nagai T, Toguchida J, Toyama Y, Muto A, Saya H. IGF2 preserves osteosarcoma cell survival by creating an autophagic state of dormancy that protects cells against chemotherapeutic stress. Cancer Res. 2014;74:6531–41. https://doi.org/10.1158/0008-5472.CAN-14-0914 .
doi: 10.1158/0008-5472.CAN-14-0914
pubmed: 25273088
Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 2018;9:1944. https://doi.org/10.1038/s41467-018-04070-6 .
doi: 10.1038/s41467-018-04070-6
pubmed: 29789598
pmcid: 5964069
Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, Tai S, Jin L, Teng CB. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif. 2019;52: e12568. https://doi.org/10.1111/cpr.12568 .
doi: 10.1111/cpr.12568
pubmed: 30706544
pmcid: 6496122
Wang L, Hoque A, Luo RZ, Yuan J, Lu Z, Nishimoto A, Liu J, Sahin AA, Lippman SM, Bast RC Jr, Yu Y. Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin Cancer Res. 2003;9:3660–6.
pubmed: 14506155
Washington MN, Suh G, Orozco AF, Sutton MN, Yang H, Wang Y, Mao W, Millward S, Ornelas A, Atkinson N, Liao W, Bast RC Jr, Lu Z. ARHI (DIRAS3)-mediated autophagy-associated cell death enhances chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts. Cell Death Dis. 2015;6: e1836. https://doi.org/10.1038/cddis.2015.208 .
doi: 10.1038/cddis.2015.208
pubmed: 26247722
pmcid: 4558501
Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A. 2010;107:14333–8. https://doi.org/10.1073/pnas.1000248107 .
doi: 10.1073/pnas.1000248107
pubmed: 20660757
pmcid: 2922542
Correa RJ, Valdes YR, Peart TM, Fazio EN, Bertrand M, McGee J, Prefontaine M, Sugimoto A, DiMattia GE, Shepherd TG. Combination of AKT inhibition with autophagy blockade effectively reduces ascites-derived ovarian cancer cell viability. Carcinogenesis. 2014;35:1951–61. https://doi.org/10.1093/carcin/bgu049 .
doi: 10.1093/carcin/bgu049
pubmed: 24562574
pmcid: 4146408
Chatterjee M, van Golen KL. Farnesyl transferase inhibitor treatment of breast cancer cells leads to altered RhoA and RhoC GTPase activity and induces a dormant phenotype. Int J Cancer. 2011;129:61–9. https://doi.org/10.1002/ijc.25655 .
doi: 10.1002/ijc.25655
pubmed: 20824700
Aqbi HF, Tyutyunyk-Massey L, Keim RC, Butler SE, Thekkudan T, Joshi S, Smith TM, Bandyopadhyay D, Idowu MO, Bear HD, Payne KK, Gewirtz DA, Manjili MH. Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget. 2018;9:22113–22. https://doi.org/10.18632/oncotarget.25197 .
doi: 10.18632/oncotarget.25197
pubmed: 29774126
pmcid: 5955162
Ikawa K, Terashima Y, Sasaki K, Tashiro S. Genetic detection of liver micrometastases that are undetectable histologically. J Surg Res. 2002;106:124–30. https://doi.org/10.1006/jsre.2002.6459 .
doi: 10.1006/jsre.2002.6459
pubmed: 12127817
Noltenius C, Noltenius H. Dormant tumor cells in liver and brain. An autopsy study on metastasizing tumors. Pathol Res Pract. 1985;179:504–11. https://doi.org/10.1016/S0344-0338(85)80191-6 .
doi: 10.1016/S0344-0338(85)80191-6
pubmed: 4001027
Aqbi HF, Coleman C, Zarei M, Manjili SH, Graham L, Koblinski J, Guo C, Xie Y, Guruli G, Bear HD, Idowu MO, Habibi M, Wang XY, Manjili MH. Local and distant tumor dormancy during early stage breast cancer are associated with the predominance of infiltrating T effector subsets. Breast Cancer Res. 2020;22:116. https://doi.org/10.1186/s13058-020-01357-9 .
doi: 10.1186/s13058-020-01357-9
pubmed: 33115528
pmcid: 7594332
Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: microenvironments and ex-vivo models. Exp Biol Med (Maywood). 2016;241:1639–52. https://doi.org/10.1177/1535370216658144 .
doi: 10.1177/1535370216658144
Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62:2162–8.
pubmed: 11929839
Martin MD, Kremers GJ, Short KW, Rocheleau JV, Xu L, Piston DW, Matrisian LM, Gorden DL. Rapid extravasation and establishment of breast cancer micrometastases in the liver microenvironment. Mol Cancer Res. 2010;8:1319–27. https://doi.org/10.1158/1541-7786.MCR-09-0551 .
doi: 10.1158/1541-7786.MCR-09-0551
pubmed: 20724460
pmcid: 2981168
Ma B, Wheeler SE, Clark AM, Whaley DL, Yang M, Wells A. Liver protects metastatic prostate cancer from induced death by activating E-cadherin signaling. Hepatology. 2016;64:1725–42. https://doi.org/10.1002/hep.28755 .
doi: 10.1002/hep.28755
pubmed: 27482645
Yates CC, Shepard CR, Stolz DB, Wells A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer. 2007;96:1246–52. https://doi.org/10.1038/sj.bjc.6603700 .
doi: 10.1038/sj.bjc.6603700
pubmed: 17406365
pmcid: 2360137
Clark AM, Heusey HL, Griffith LG, Lauffenburger DA, Wells A. IP-10 (CXCL10) can trigger emergence of dormant breast cancer cells in a metastatic liver microenvironment. Front Oncol. 2021;11: 676135. https://doi.org/10.3389/fonc.2021.676135 .
doi: 10.3389/fonc.2021.676135
pubmed: 34123844
pmcid: 8190328
Ma B, Wells A. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells. J Biol Chem. 2014 Apr 18;289(16):11153-11161. https://doi.org/10.1074/jbc.M113.540237 . Epub 2014 Mar 11. PMID: 24619413; PMCID: PMC4036254.
Clark AM, Kumar MP, Wheeler SE, Young CL, Venkataramanan R, Stolz DB, Griffith LG, Lauffenburger DA, Wells A. A model of dormant-emergent metastatic breast cancer progression enabling exploration of biomarker signatures. Mol Cell Proteomics. 2018;17:619–30. https://doi.org/10.1074/mcp.RA117.000370 .
doi: 10.1074/mcp.RA117.000370
pubmed: 29353230
pmcid: 5880110
Chao Y, Wu Q, Shepard C, Wells A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis. 2012;29:39–50. https://doi.org/10.1007/s10585-011-9427-3 .
doi: 10.1007/s10585-011-9427-3
pubmed: 21964676
Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, Jackson DG, Colpaert CG, van Marck EA, Dirix LY, Vermeulen PB. Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer. 2004;90:1429–36. https://doi.org/10.1038/sj.bjc.6601727 .
Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M, Stoeppeler S, Haier J. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One. 2012;7(1):e30046. https://doi.org/10.1371/journal.pone.0030046 . Epub 2012 Jan 13. PMID: 22253872; PMCID: PMC3258260.
Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008 Sep;48(3):920–30. https://doi.org/10.1002/hep.22351 . PMID: 18613151; PMCID: PMC2695448.
DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol. 2004 Oct;287(4):G757–63. https://doi.org/10.1152/ajpgi.00017.2004 . Epub 2004 Jun 10. PMID: 15191879.
Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004 Oct 28;431(7012):1112–7. https://doi.org/10.1038/nature03043 . Epub 2004 Oct 10. PMID:15475948.
Lenk L, Pein M, Will O, Gomez B, Viol F, Hauser C, Egberts JH, Gundlach JP, Helm O, Tiwari S, Weiskirchen R, Rose-John S, Röcken C, Mikulits W, Wenzel P, Schneider G, Saur D, Schäfer H, Sebens S. The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Oncoimmunology. 2017 Oct26;7(1):e1368603. https://doi.org/10.1080/2162402X.2017.1368603 . PMID: 29296518; PMCID: PMC5739558.
Knaack H, Lenk L, Philipp LM, Miarka L, Rahn S, Viol F, Hauser C, Egberts JH, Gundlach JP, Will O, Tiwari S, Mikulits W, Schumacher U, Hengstler JG, Sebens S. Liver metastasis of pancreatic cancer: the hepatic microenvironment impacts differentiation and self-renewal capacity of pancreatic ductal epithelial cells. Oncotarget. 2018;9:31771–86. https://doi.org/10.18632/oncotarget.25884 .
doi: 10.18632/oncotarget.25884
pubmed: 30167093
pmcid: 6114965
Fabian A, Stegner S, Miarka L, Zimmermann J, Lenk L, Rahn S, Buttlar J, Viol F, Knaack H, Esser D, Schauble S, Grossmann P, Marinos G, Hasler R, Mikulits W, Saur D, Kaleta C, Schafer H, Sebens S. Metastasis of pancreatic cancer: an uninflamed liver micromilieu controls cell growth and cancer stem cell properties by oxidative phosphorylation in pancreatic ductal epithelial cells. Cancer Lett. 2019;453:95–106. https://doi.org/10.1016/j.canlet.2019.03.039 .
doi: 10.1016/j.canlet.2019.03.039
pubmed: 30930235
Kondo T, Okabayashi K, Hasegawa H, Tsuruta M, Shigeta K, Kitagawa Y. The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br J Cancer. 2016 Jun 28;115(1):34–9. https://doi.org/10.1038/bjc.2016.155 . Epub 2016 Jun 9. PMID: 27280634; PMCID: PMC4931372
Hu X, Marietta A, Dai WX, Li YQ, Ma XJ, Zhang L, Cai SJ, Peng JJ. Prediction of hepatic metastasis and relapse in colorectal cancers based on concordance analyses with liver fibrosis scores. Clin Transl Med. 2020 Feb 5;9(1):13. https://doi.org/10.1186/s40169-020-0264-3 . PMID: 32025991; PMCID: PMC7002812.
Harun N, Nikfarjam M, Muralidharan V, Christophi C. Liver regeneration stimulates tumor metastases. J Surg Res. 2007 Apr;138(2):284–90. https://doi.org/10.1016/j.jss.2006.06.024 . Epub 2007 Jan 24. PMID: 17254608.
Bertolotti M, Lonardo A, Mussi C, Baldelli E, Pellegrini E, Ballestri S, Romagnoli D, Loria P. Nonalcoholic fatty liver disease and aging: epidemiology to management. World J Gastroenterol. 2014 Oct 21;20(39):14185–204. https://doi.org/10.3748/wjg.v20.i39.14185 . PMID: 25339806; PMCID: PMC4202348.
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):397–411. https://doi.org/10.1038/nrgastro.2017.38 . Epub 2017 May 10. PMID: 28487545
Fishbein A, Wang W, Yang H, Yang J, Hallisey VM, Deng J, Verheul SML, Hwang SH, Gartung A, Wang Y, Bielenberg DR, Huang S, Kieran MW, Hammock BD, Panigrahy D. Resolution of eicosanoid/cytokine storm prevents carcinogen and inflammation-initiated hepatocellular cancer progression. Proc Natl Acad Sci U S A. 2020;117:21576–87. https://doi.org/10.1073/pnas.2007412117 .
De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, Schwabe RF. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology. 2007 May;132(5):1937–46. https://doi.org/10.1053/j.gastro.2007.02.033 . Epub 2007 Feb 21. PMID: 17484886.
Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, Lu L, Qian S. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004 Dec;40(6):1312–21. https://doi.org/10.1002/hep.20488 . PMID: 15565659
Khazali AS, Clark AM, Wells A. Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. Br J Cancer. 2018 Feb 20;118(4):566–76. https://doi.org/10.1038/bjc.2017.414 . Epub 2017 Nov 23. PMID: 29169181; PMCID: PMC5830588.
Pommier A, Anaparthy N, Memos N, Kelley ZL, Gouronnec A, Yan R, Auffray C, Albrengues J, Egeblad M, Iacobuzio-Donahue CA, Lyons SK, Fearon DT. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018 Jun 15;360(6394):eaao4908. https://doi.org/10.1126/science.aao4908 . Epub 2018 May 17. PMID: 29773669; PMCID: PMC6547380.
Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, Horani A, Nassar M, Friedman SL, Safadi R. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol. 2006 Jul;45(1):60–71. https://doi.org/10.1016/j.jhep.2005.12.025 . Epub 2006 Feb 8. PMID: 16515819.
Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau WB, Lau B, Li Y, Zhao X, Wei Y, Zhou S. Surgical stress and cancer progression: the twisted tango. Mol Cancer. 2019;18:132. https://doi.org/10.1186/s12943-019-1058-3 .
doi: 10.1186/s12943-019-1058-3
pubmed: 31477121
pmcid: 6717988
Bohm F, Kohler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med. 2010;2:294–305. https://doi.org/10.1002/emmm.201000085 .
doi: 10.1002/emmm.201000085
pubmed: 20652897
pmcid: 3377328
Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505:97–102. https://doi.org/10.1038/nature12681 .
doi: 10.1038/nature12681
pubmed: 24256728
Yang L, Magness ST, Bataller R, Rippe RA, Brenner DA. NF-kappaB activation in Kupffer cells after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol. 2005;289:G530–8. https://doi.org/10.1152/ajpgi.00526.2004 .
doi: 10.1152/ajpgi.00526.2004
pubmed: 15905413
Oe S, Lemmer ER, Conner EA, Factor VM, Leveen P, Larsson J, Karlsson S, Thorgeirsson SS. Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in mice. Hepatology. 2004;40:1098–105. https://doi.org/10.1002/hep.20426 .
doi: 10.1002/hep.20426
pubmed: 15389868
Wheeler SE, Clark AM, Taylor DP, Young CL, Pillai VC, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A. Spontaneous dormancy of metastatic breast cancer cells in an all human liver microphysiologic system. Br J Cancer. 2014;111:2342–50. https://doi.org/10.1038/bjc.2014.533 .
doi: 10.1038/bjc.2014.533
pubmed: 25314052
pmcid: 4264444
Taylor DP, Clark A, Wheeler S, Wells A. Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Breast Cancer Res Treat. 2014;144:551–60. https://doi.org/10.1007/s10549-014-2875-0 .
doi: 10.1007/s10549-014-2875-0
pubmed: 24610032
pmcid: 4009995
Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip. 2016;17:156–68. https://doi.org/10.1039/c6lc01171c .
doi: 10.1039/c6lc01171c
pubmed: 27910972
pmcid: 5242229
Chen WLK, Edington C, Suter E, Yu J, Velazquez JJ, Velazquez JG, Shockley M, Large EM, Venkataramanan R, Hughes DJ, Stokes CL, Trumper DL, Carrier RL, Cirit M, Griffith LG, Lauffenburger DA. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol Bioeng. 2017;114:2648–59. https://doi.org/10.1002/bit.26370 .
doi: 10.1002/bit.26370
pubmed: 28667746
pmcid: 5614865
Toiyama Y, Fujikawa H, Kawamura M, Matsushita K, Saigusa S, Tanaka K, Inoue Y, Uchida K, Mohri Y, Kusunoki M. Evaluation of CXCL10 as a novel serum marker for predicting liver metastasis and prognosis in colorectal cancer. Int J Oncol. 2012;40:560–6. https://doi.org/10.3892/ijo.2011.1247 .
doi: 10.3892/ijo.2011.1247
pubmed: 22038159
Hintermann E, Bayer M, Pfeilschifter JM, Luster AD, Christen U. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J Autoimmun. 2010;35:424–35. https://doi.org/10.1016/j.jaut.2010.09.003 .
doi: 10.1016/j.jaut.2010.09.003
pubmed: 20932719
Khazali AS, Clark AM, Wells A. Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. Br J Cancer. 2018;118:566–76. https://doi.org/10.1038/bjc.2017.414 .
doi: 10.1038/bjc.2017.414
pubmed: 29169181
Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008;27:1863–74. https://doi.org/10.1038/emboj.2008.115 .
doi: 10.1038/emboj.2008.115
pubmed: 18566590
pmcid: 2486425
Xiong W, Sun LP, Chen XM, Li HY, Huang SA, Jie SH. Comparison of microRNA expression profiles in HCC-derived microvesicles and the parental cells and evaluation of their roles in HCC. J Huazhong Univ Sci Technolog Med Sci. 2013;33:346–52. https://doi.org/10.1007/s11596-013-1122-y .
doi: 10.1007/s11596-013-1122-y
pubmed: 23771658
Zhou C, Huang Y, Chen Y, Xie Y, Wen H, Tan W, Wang C. miR-602 mediates the RASSF1A/JNK pathway, thereby promoting postoperative recurrence in nude mice with liver cancer. Onco Targets Ther. 2020;13:6767–76. https://doi.org/10.2147/OTT.S243651 .
doi: 10.2147/OTT.S243651
pubmed: 32764964
pmcid: 7368130
Ashokachakkaravarthy K, Pottakkat B. Mitotic quiescence in hepatic cancer stem cells: an incognito mode. Oncol Rev. 2020;14:452. https://doi.org/10.4081/oncol.2020.452 .
doi: 10.4081/oncol.2020.452
pubmed: 32153726
pmcid: 7036709
Liu J, Wang K, Yan Z, Xia Y, Li J, Shi L, Zou Q, Wan X, Jiao B, Wang H, Wu M, Zhang Y, Shen F. Axl expression stratifies patients with poor prognosis after hepatectomy for hepatocellular carcinoma. PLoS ONE. 2016;11: e0154767. https://doi.org/10.1371/journal.pone.0154767 .
doi: 10.1371/journal.pone.0154767
pubmed: 27182739
pmcid: 4868325
Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, Jiang S, Li T, Gao J, Yang Y. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis. 2017;8: e2700. https://doi.org/10.1038/cddis.2017.113 .
doi: 10.1038/cddis.2017.113
pubmed: 28333143
pmcid: 5386520
Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, Tomar G, Papke B, Hobbs GA, Yan L, Hayes TK, Diehl JN, Goode GD, Chaika NV, Wang Y, Zhang GF, Witkiewicz AK, Knudsen ES, Petricoin EF 3rd, Singh PK, Macdonald JM, Tran NL, Lyssiotis CA, Ying H, Kimmelman AC, Cox AD, Der CJ. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40. https://doi.org/10.1038/s41591-019-0368-8 .
doi: 10.1038/s41591-019-0368-8
pubmed: 30833752
pmcid: 6484853
Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, Schuman SS, Shea JE, Seipp MT, Yap JT, Burrell LD, Lum DH, Whisenant JR, Gilcrease GW 3rd, Cavalieri CC, Rehbein KM, Cutler SL, Affolter KE, Welm AL, Welm BE, Scaife CL, Snyder EL, McMahon M. Protective autophagy elicited by RAF–>MEK–>ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7. https://doi.org/10.1038/s41591-019-0367-9 .
doi: 10.1038/s41591-019-0367-9
pubmed: 30833748
pmcid: 6452642
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29. https://doi.org/10.1101/gad.2016111 .
doi: 10.1101/gad.2016111
pubmed: 21406549
pmcid: 3070934
Boone BA, Bahary N, Zureikat AH, Moser AJ, Normolle DP, Wu WC, Singhi AD, Bao P, Bartlett DL, Liotta LA, Espina V, Loughran P, Lotze MT, Zeh HJ 3rd. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22:4402–10. https://doi.org/10.1245/s10434-015-4566-4 .
doi: 10.1245/s10434-015-4566-4
pubmed: 25905586
pmcid: 4663459
Wolpin BM, Rubinson DA, Wang X, Chan JA, Cleary JM, Enzinger PC, Fuchs CS, McCleary NJ, Meyerhardt JA, Ng K, Schrag D, Sikora AL, Spicer BA, Killion L, Mamon H, Kimmelman AC. Phase II and pharmacodynamic study of autophagy inhibition using hydroxychloroquine in patients with metastatic pancreatic adenocarcinoma. Oncologist. 2014;19:637–8. https://doi.org/10.1634/theoncologist.2014-0086 .
doi: 10.1634/theoncologist.2014-0086
pubmed: 24821822
pmcid: 4041680