Efficacy and safety of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria and prevalence of molecular markers associated with artemisinin and partner drug resistance in Uganda.


Journal

Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802

Informations de publication

Date de publication:
24 Dec 2021
Historique:
received: 21 07 2021
accepted: 12 12 2021
entrez: 25 12 2021
pubmed: 26 12 2021
medline: 5 1 2022
Statut: epublish

Résumé

In Uganda, artemether-lumefantrine (AL) is first-line therapy and dihydroartemisinin-piperaquine (DP) second-line therapy for the treatment of uncomplicated malaria. This study evaluated the efficacy and safety of AL and DP in the management of uncomplicated falciparum malaria and measured the prevalence of molecular markers of resistance in three sentinel sites in Uganda from 2018 to 2019. This was a randomized, open-label, phase IV clinical trial. Children aged 6 months to 10 years with uncomplicated falciparum malaria were randomly assigned to treatment with AL or DP and followed for 28 and 42 days, respectively. Genotyping was used to distinguish recrudescence from new infection, and a Bayesian algorithm was used to assign each treatment failure a posterior probability of recrudescence. For monitoring resistance, Pfk13 and Pfmdr1 genes were Sanger sequenced and plasmepsin-2 copy number was assessed by qPCR. There were no early treatment failures. The uncorrected 28-day cumulative efficacy of AL ranged from 41.2 to 71.2% and the PCR-corrected cumulative 28-day efficacy of AL ranged from 87.2 to 94.4%. The uncorrected 28-day cumulative efficacy of DP ranged from 95.8 to 97.9% and the PCR-corrected cumulative 28-day efficacy of DP ranged from 98.9 to 100%. The uncorrected 42-day efficacy of DP ranged from 73.5 to 87.4% and the PCR-corrected 42-day efficacy of DP ranged from 92.1 to 97.5%. There were no reported serious adverse events associated with any of the regimens. No resistance-associated mutations in the Pfk13 gene were found in the successfully sequenced samples. In the AL arm, the NFD haplotype (N86Y, Y184F, D1246Y) was the predominant Pfmdr1 haplotype, present in 78 of 127 (61%) and 76 of 110 (69%) of the day 0 and day of failure samples, respectively. All the day 0 samples in the DP arm had one copy of the plasmepsin-2 gene. DP remains highly effective and safe for the treatment of uncomplicated malaria in Uganda. Recurrent infections with AL were common. In Busia and Arua, the 95% confidence interval for PCR-corrected AL efficacy fell below 90%. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. Trial registration The trail was also registered with the ISRCTN registry with study Trial No. PACTR201811640750761.

Sections du résumé

BACKGROUND BACKGROUND
In Uganda, artemether-lumefantrine (AL) is first-line therapy and dihydroartemisinin-piperaquine (DP) second-line therapy for the treatment of uncomplicated malaria. This study evaluated the efficacy and safety of AL and DP in the management of uncomplicated falciparum malaria and measured the prevalence of molecular markers of resistance in three sentinel sites in Uganda from 2018 to 2019.
METHODS METHODS
This was a randomized, open-label, phase IV clinical trial. Children aged 6 months to 10 years with uncomplicated falciparum malaria were randomly assigned to treatment with AL or DP and followed for 28 and 42 days, respectively. Genotyping was used to distinguish recrudescence from new infection, and a Bayesian algorithm was used to assign each treatment failure a posterior probability of recrudescence. For monitoring resistance, Pfk13 and Pfmdr1 genes were Sanger sequenced and plasmepsin-2 copy number was assessed by qPCR.
RESULTS RESULTS
There were no early treatment failures. The uncorrected 28-day cumulative efficacy of AL ranged from 41.2 to 71.2% and the PCR-corrected cumulative 28-day efficacy of AL ranged from 87.2 to 94.4%. The uncorrected 28-day cumulative efficacy of DP ranged from 95.8 to 97.9% and the PCR-corrected cumulative 28-day efficacy of DP ranged from 98.9 to 100%. The uncorrected 42-day efficacy of DP ranged from 73.5 to 87.4% and the PCR-corrected 42-day efficacy of DP ranged from 92.1 to 97.5%. There were no reported serious adverse events associated with any of the regimens. No resistance-associated mutations in the Pfk13 gene were found in the successfully sequenced samples. In the AL arm, the NFD haplotype (N86Y, Y184F, D1246Y) was the predominant Pfmdr1 haplotype, present in 78 of 127 (61%) and 76 of 110 (69%) of the day 0 and day of failure samples, respectively. All the day 0 samples in the DP arm had one copy of the plasmepsin-2 gene.
CONCLUSIONS CONCLUSIONS
DP remains highly effective and safe for the treatment of uncomplicated malaria in Uganda. Recurrent infections with AL were common. In Busia and Arua, the 95% confidence interval for PCR-corrected AL efficacy fell below 90%. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. Trial registration The trail was also registered with the ISRCTN registry with study Trial No. PACTR201811640750761.

Identifiants

pubmed: 34952573
doi: 10.1186/s12936-021-04021-5
pii: 10.1186/s12936-021-04021-5
pmc: PMC8709966
doi:

Substances chimiques

Antimalarials 0
Artemether, Lumefantrine Drug Combination 0
Artemisinins 0
Biomarkers 0
Quinolines 0
artenimol 6A9O50735X
piperaquine A0HV2Q956Y

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

484

Subventions

Organisme : united states agency for international development
ID : AID-617-C-16001

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

WHO. World Malaria Report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. p. 2020.
Ministry of Health Uganda. The Uganda clinical guideline: National guidelines for management of common conditions. Kampala, 2016.
WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015.
Yeka A, Wallender E, Mulebeke R, Kibuuka A, Kigozi R, Bosco A, et al. Comparative efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated malaria in Ugandan children. J Infect Dis. 2019;219:1112–20.
Warsame M, Hassan AM, Hassan AH, Jibril AM, Khim N, Arale AM, et al. High therapeutic efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Somalia. Malar J. 2019;18:231.
pubmed: 6624891 pmcid: 6624891
Uwimana A, Penkunas MJ, Nisingizwe MP, Warsame M, Umulisa N, Uyizeye D, et al. Efficacy of artemether-lumefantrine versus dihydroartemisinin-piperaquine for the treatment of uncomplicated malaria among children in Rwanda: an open-label, randomized controlled trial. Trans R Soc Trop Med Hyg. 2019;113:312–9.
Roth JM, Sawa P, Makio N, Omweri G, Osoti V, Okach S, et al. Pyronaridine-artesunate and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children: a randomized controlled non-inferiority trial. Malar J. 2018;17:199.
pubmed: 5952621 pmcid: 5952621
Mandara CI, Kavishe RA, Gesase S, Mghamba J, Ngadaya E, Mmbuji P, et al. High efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Muheza and Kigoma districts, Tanzania. Malar J. 2018;17:261.
pubmed: 6042436 pmcid: 6042436
Grandesso F, Guindo O, Woi Messe L, Makarimi R, Traore A, Dama S, et al. Efficacy of artesunate-amodiaquine, dihydroartemisinin-piperaquine and artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Maradi, Niger. Malar J. 2018;17:52.
pubmed: 5785863 pmcid: 5785863
Ebenebe JC, Ntadom G, Ambe J, Wammanda R, Jiya N, Finomo F, et al. Efficacy of artemisinin-based combination treatments of uncomplicated falciparum malaria in under-five-year-old Nigerian children ten years following adoption as first-line antimalarials. Am J Trop Med Hyg. 2018;99:649–64.
pubmed: 6169162 pmcid: 6169162
Davlantes E, Dimbu PR, Ferreira CM, Florinda Joao M, Pode D, Felix J, et al. Efficacy and safety of artemether-lumefantrine, artesunate-amodiaquine, and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar J. 2018;17:144.
pubmed: 5883595 pmcid: 5883595
Han KT, Lin K, Myint MK, Thi A, Aye KH, Han ZY, et al. Artemether-lumefantrine and dihydroartemisinin-piperaquine retain high efficacy for treatment of uncomplicated Plasmodium falciparum malaria in Myanmar. Am J Trop Med Hyg. 2020;102:598–604.
WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
WHO. Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010–2019). Geneva: World Health Organization; 2020.
Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis. 2021;21:1120–8.
Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–65.
pubmed: 4792715 pmcid: 4792715
Uwimana A, Legrand E, Stokes BH, Ndikumana JM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26:1602–8.
pubmed: 7541349 pmcid: 7541349
Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17:174–83.
pubmed: 5266792 pmcid: 5266792
Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S. Molecular surveillance of Pfkelch13 and Pfmdr1 mutations in Plasmodium falciparum isolates from southern Thailand. Korean J Parasitol. 2019;57:369–77.
pubmed: 6753301 pmcid: 6753301
Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, et al. Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother. 2003;47:2418–23.
pubmed: 166057 pmcid: 166057
Sidhu AB, Valderramos SG, Fidock DA. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol. 2005;57:913–26.
Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, et al. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis. 2017;17:164–73.
MoH. Malaria indicator survey 2018–19. Kampala: Ministry of Health, National Malaria Control Division Kampala, Uganda; 2020.
WHO. Handbook: IMCI integrated management of childhood illness. Geneva: World Health Organization; 2005.
Adu-Gyasi D, Asante KP, Newton S, Amoako S, Dosoo D, Ankrah L, et al. Malaria parasite density estimated with white blood cells count reference value agrees with density estimated with absolute in children less than 5 years in central Ghana. Malar Res Treat. 2015;2015: 923674.
pubmed: 4405299 pmcid: 4405299
WHO. Basic malaria microscopy—part I: learner’s guide. 2nd ed. Geneva: World Health Organization; 2010.
Halsey ES, Venkatesan M, Plucinski MM, Talundzic E, Lucchi NW, Zhou Z, et al. Capacity development through the US President’s Malaria Initiative-supported antimalarial resistance monitoring in Africa network. Emerg Infect Dis. 2017;23:S53–6.
pubmed: 5711327 pmcid: 5711327
Plucinski MM, Morton L, Bushman M, Dimbu PR, Udhayakumar V. Robust algorithm for systematic classification of malaria late treatment failures as recrudescence or reinfection using microsatellite genotyping. Antimicrob Agents Chemother. 2015;59:6096–100.
pubmed: 4576024 pmcid: 4576024
Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995;52:565–8.
Lucchi NW, Karell MA, Journel I, Rogier E, Goldman I, Ljolje D, et al. PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011. Malar J. 2014;13:462.
pubmed: 4289323 pmcid: 4289323
Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, et al. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg. 2006;75:836–42.
Nyachieo A, van Overmeir C, Laurent T, Dujardin JC, D’Alessandro U. Plasmodium falciparum genotyping by microsatellites as a method to distinguish between recrudescent and new infections. Am J Trop Med Hyg. 2005;73:210–3.
Jones S, Kay K, Hodel EM, Hastings IM. A computer modelling approach to evaluate the accuracy of microsatellite markers for classification of recurrent infections during routine monitoring of antimalarial drug efficacy. Antimicrob Agents Chemother. 2020;64:1517–9.
Talundzic E, Chenet SM, Goldman IF, Patel DS, Nelson JA, Plucinski MM, et al. Genetic analysis and species specific amplification of the artemisinin resistance-associated kelch propeller domain in P. falciparum and P. vivax. PLoS ONE. 2015;10: e0136099.
pubmed: 4546394 pmcid: 4546394
Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–60.
Souza SS, L’Episcopia M, Severini C, Udhayakumar V, Lucchi NW. Photo-induced electron transfer real-time pcr for detection of Plasmodium falciparum plasmepsin 2 gene copy number. Antimicrob Agents Chemother. 2018;62:e00317-e318.
pubmed: 6105858 pmcid: 6105858
Dixon JR. The international conference on harmonization good clinical practice guideline. Qual Assur. 1998;6:65–74.
National Institutes of Health, National Institute of Allergy and Infectious Diseases, Division of AIDS (DAIDS). Table for grading the severity of adult and pediatric adverse events, corrected version 2.1. 2017.
Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J Infect Dis. 2021;223:985–94.
Kamya MR, Yeka A, Bukirwa H, Lugemwa M, Rwakimari JB, Staedke SG, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of malaria: a randomized trial. PLoS Clin Trials. 2007;2: e20.
pubmed: 1876597 pmcid: 1876597
WHO. Artemisinin and artemisinin-based combination therapy resistance. Geneva: World Health Organization; 2017.
Rasmussen SA, Ceja FG, Conrad MD, Tumwebaze PK, Byaruhanga O, Katairo T, et al. Changing antimalarial drug sensitivities in Uganda. Antimicrob Agents Chemother. 2017;61:e0156-e217.
Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother. 2015;59:5061–4.
pubmed: 4505276 pmcid: 4505276
Zani B, Gathu M, Donegan S, Olliaro PL, Sinclair D. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev. 2014;2014: CD010927.
pubmed: 4470355 pmcid: 4470355

Auteurs

Chris Ebong (C)

Infectious Diseases Research Collaboration, Kampala, Uganda. echochris2@gmail.com.

Asadu Sserwanga (A)

Infectious Diseases Research Collaboration, Kampala, Uganda.

Jane Frances Namuganga (JF)

Infectious Diseases Research Collaboration, Kampala, Uganda.

James Kapisi (J)

Infectious Diseases Research Collaboration, Kampala, Uganda.

Arthur Mpimbaza (A)

Infectious Diseases Research Collaboration, Kampala, Uganda.

Samuel Gonahasa (S)

Infectious Diseases Research Collaboration, Kampala, Uganda.

Victor Asua (V)

Infectious Diseases Research Collaboration, Kampala, Uganda.

Sam Gudoi (S)

USAID's Malaria Action Program for Districts, Kampala, Uganda.

Ruth Kigozi (R)

USAID's Malaria Action Program for Districts, Kampala, Uganda.

James Tibenderana (J)

USAID's Malaria Action Program for Districts, Kampala, Uganda.

John Bosco Bwanika (JB)

USAID's Malaria Action Program for Districts, Kampala, Uganda.

Agaba Bosco (A)

National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda.

Denis Rubahika (D)

National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda.

Daniel Kyabayinze (D)

National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda.

Jimmy Opigo (J)

National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda.

Damian Rutazana (D)

National Malaria Control Division, Ministry of Health Uganda, Kampala, Uganda.

Gloria Sebikaari (G)

U.S. President's Malaria Initiative, Kampala, Uganda.

Kassahun Belay (K)

U.S. President's Malaria Initiative, Kampala, Uganda.

Mame Niang (M)

U.S. President's Malaria Initiative, Kampala, Uganda.

Eric S Halsey (ES)

Malaria Branch, Centers for Disease Control and Prevention & President's Malaria Initiative, Atlanta, GA, USA.

Leah F Moriarty (LF)

Malaria Branch, Centers for Disease Control and Prevention & President's Malaria Initiative, Atlanta, GA, USA.

Naomi W Lucchi (NW)

Malaria Branch, Centers for Disease Control and Prevention & President's Malaria Initiative, Atlanta, GA, USA.

Samaly S Svigel Souza (SSS)

Malaria Branch, Centers for Disease Control and Prevention & President's Malaria Initiative, Atlanta, GA, USA.

Sam L Nsobya (SL)

Infectious Diseases Research Collaboration, Kampala, Uganda.
Makerere University College of Health Sciences, Kampala, Uganda.

Moses R Kamya (MR)

Infectious Diseases Research Collaboration, Kampala, Uganda.
Makerere University College of Health Sciences, Kampala, Uganda.

Adoke Yeka (A)

Infectious Diseases Research Collaboration, Kampala, Uganda.
Makerere University College of Health Sciences, Kampala, Uganda.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH