A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin.
Analytical hierarchy process (AHP)
DRASTIC
Drainage density
Probability frequency ratio (PFR)
SWAT
Vulnerability
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
received:
27
07
2021
accepted:
27
11
2021
pubmed:
4
1
2022
medline:
12
4
2022
entrez:
3
1
2022
Statut:
ppublish
Résumé
The quality of groundwater in the study watershed has worsened because of industrial effluents and residential wastes from the urbanized cities; therefore, there is an important need to explore the aquifer vulnerability to pollution for sustainable groundwater management in the Irrigated Indus Basin (IIB). This study proposed a novel methodology to quantify groundwater vulnerability using two fully independent methodologies: the first by reintroducing an improved recharge factor (R) map and the second by incorporating three different weight and rating schemes into a traditional DRASTIC framework to improve the performance of the DRASTIC approach. In the current study, we composed a recharge map from Soil and Water Assessment Tool (SWAT) output (namely SWAT recharge map) with a drainage density map to retrieve an improved composite recharge map (SWAT-CRM). SWAT-CRM along with other thematic layers was combined using weightage overlay analysis to prepare the maps of groundwater vulnerability index (VI). The weight scale (w) and rating scale (r) were assigned based on a survey of available literature, and we then amended them using the analytical hierarchy process (AHP) and a probability frequency ratio (PFR) technique. Results depicted that the region under high groundwater vulnerability was found to be 5-22% using traditional recharge maps, while those are 9-23% using improved SWAT-CRM. The area under the curve (AUC) revealed that groundwater vulnerability zones predicted with SWAT-CRM outperformed the DRASTIC model applied with the traditional recharge map. Groundwater electrical conductivity (EC) was>2500 mS/cm in the high groundwater vulnerability zones, while it was <1000 mS/cm in the low groundwater vulnerability zones. The outcomes of this study can be used to improve the sustainability of the groundwater resources in IIB through proper land-use management practices.
Identifiants
pubmed: 34978039
doi: 10.1007/s11356-021-17882-9
pii: 10.1007/s11356-021-17882-9
doi:
Substances chimiques
Soil
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
27257-27278Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abunada Z, Kishawi Y, Alslaibi TM, Kaheil N, Mittelstet A (2021) The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: case study. J Hydrol 592. https://doi.org/10.1016/j.jhydrol.2020.125613
Adnan S, Iqbal J, Maltamo M, Valbuena R (2018) GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan. Arab J Geosci 11. https://doi.org/10.1007/s12517-018-3795-9
Ahada CPS, Suthar S (2018) A GIS based DRASTIC model for assessing aquifer vulnerability in Southern Punjab, India. Model Earth Syst Environ 4:635–645. https://doi.org/10.1007/s40808-018-0449-6
doi: 10.1007/s40808-018-0449-6
Ahmed I, Nazzal Y, Zaidi F (2018) Groundwater pollution risk mapping using modified DRASTIC model in parts of hail region of Saudi Arabia. Environ Eng Res 23:84–91. https://doi.org/10.4491/eer.2017.072
doi: 10.4491/eer.2017.072
Akram W, Latif Z, Iqbal N, Tasneem MA (2014) Isotopic investigation of groundwater recharge mechanism in Thal Doab. The Nucleus 51(2):187–197
Aller L, Lehr J, Petty R, Bennett T (1987) A standardized system to evaluate groundwater pollution using the hydrogeologic setting. J Geol Soc India 29(1):23–37
Aller, Linda. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 1985.
Alwathaf Y, Mansouri B. El (2011) Assessment of aquifer vulnerability based on GIS and ARCGIS methods: a case study of the Sana’a Basin (Yemen). J Water Resour Prot 03:845–855. https://doi.org/10.4236/jwarp.2011.312094
doi: 10.4236/jwarp.2011.312094
Arshad A, Zhang Z, Zhang W, Dilawar A (2020) Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front 11:1805–1819. https://doi.org/10.1016/j.gsf.2019.12.013
doi: 10.1016/j.gsf.2019.12.013
Asghar MN, Prathapar SA, Shafique MS (2002) Extracting relatively-fresh groundwater from aquifers underlain by salty groundwater. Agric Water Manag 52:119–137. https://doi.org/10.1016/S0378-3774(01)00130-5
doi: 10.1016/S0378-3774(01)00130-5
Baba M El, Kayastha P, Huysmans M, Smedt F De (2020) Contamination assessment and mapping using. Water 12:1–19
Barbulescu A (2020) Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: a review. Water (Switzerland) 12. https://doi.org/10.3390/W12051356
Barzegar R, Asghari Moghaddam A, Norallahi S, Inam A, Adamowski J, Alizadeh MR, Bou Nassar J (2020) Modification of the DRASTIC Framework for mapping groundwater vulnerability zones. Groundwater 58:441–452. https://doi.org/10.1111/gwat.12919
doi: 10.1111/gwat.12919
Bera A, Mukhopadhyay BP, Chowdhury P, Ghosh A, Biswas S (2021) Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. Ecotoxicol Environ Saf 214:112085. https://doi.org/10.1016/j.ecoenv.2021.112085
doi: 10.1016/j.ecoenv.2021.112085
Bonsor HC, MacDonald AM, Ahmed KM, Burgess WG, Basharat M, Calow RC, Dixit A, Foster SSD, Gopal K, Lapworth DJ, Moench M, Mukherjee A, Rao MS, Shamsudduha M, Smith L, Taylor RG, Tucker J, van Steenbergen F, Yadav SK, Zahid A (2017) Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeol J 25:1377–1406. https://doi.org/10.1007/s10040-017-1550-z
doi: 10.1007/s10040-017-1550-z
Boyle, B (2017) Groundwater vulnerability assessment for nitrate pollution in the Salinas Valley using a modified DRASTIC model.
Brindha K, Elango L (2015) Cross comparison of five popular groundwater pollution vulnerability index approaches. J Hydrol 524:597–613. https://doi.org/10.1016/j.jhydrol.2015.03.003
doi: 10.1016/j.jhydrol.2015.03.003
Cheema MJM, Bastiaanssen WGM (2010) Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric Water Manag 97:1541–1552. https://doi.org/10.1016/j.agwat.2010.05.009
doi: 10.1016/j.agwat.2010.05.009
Cheema MJM, Immerzeel WW, Bastiaanssen WGM (2014) Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater 52:25–36. https://doi.org/10.1111/gwat.12027
doi: 10.1111/gwat.12027
Chenini I, Zghibi A, Kouzana L (2015) Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J Afr Earth Sci 109:11–26. https://doi.org/10.1016/j.jafrearsci.2015.05.008
doi: 10.1016/j.jafrearsci.2015.05.008
Das S (2019) Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundw Sustain Dev 8:617–629. https://doi.org/10.1016/j.gsd.2019.03.003
doi: 10.1016/j.gsd.2019.03.003
Das S, Pardeshi SD (2018) Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Appl Water Sci 8. https://doi.org/10.1007/s13201-018-0848-x
Douglas SH, Dixon B, Griffin D (2018) Assessing the abilities of intrinsic and specific vulnerability models to indicate groundwater vulnerability to groups of similar pesticides: a comparative study. Phys Geogr 39:487–505. https://doi.org/10.1080/02723646.2017.1406300
doi: 10.1080/02723646.2017.1406300
Ertürk A, Ekdal A, Gurel M, Karakaya N, Cuceloglu G, Gönenç E (2017) Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Reg Environ Chang 17:1193–1203. https://doi.org/10.1007/s10113-017-1106-8
doi: 10.1007/s10113-017-1106-8
Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010
doi: 10.1016/j.patrec.2005.10.010
Hao J, Zhang Y, Jia Y, Wang H, Niu C, Gan Y, Gong Y (2017) Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: a case study in Chaoyang District of Beijing City. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-2885-4
Jang WS, Engel B, Harbor J, Theller L (2017) Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water (Switzerland) 9. https://doi.org/10.3390/w9100792
Jarray H, Zammouri M, Ouessar M, Zerrim A, Yahyaoui H (2017) GIS based DRASTIC model for groundwater vulnerability assessment: case study of the shallow mio-plio-quaternary aquifer (Southeastern Tunisia). Water Resour 44:595–603. https://doi.org/10.1134/S0097807817040066
doi: 10.1134/S0097807817040066
Javed, Qaiser, M. Arshad, Allah Bakhsh, Aamir Shakoor, Zia A. Chatha, and Ijaz Ahmad. "Redesigning of drip irrigation system using locally manufactured material to control pipe losses for orchard." Pakistan Journal of Life and Social Sciences 13, no. 1 (2015): 16-19.
Jmal I, Ayed B, Boughariou E, Allouche N, Saidi S, Hamdi M, Bouri S (2017) Assessing groundwater vulnerability to nitrate pollution using statistical approaches: a case study of Sidi Bouzid shallow aquifer, Central Tunisia. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-3143-5
Khakhar M, Ruparelia JP, Vyas A (2017) Assessing groundwater vulnerability using GIS-based DRASTIC model for Ahmedabad district, India. Environ Earth Sci 76. https://doi.org/10.1007/s12665-017-6761-z
Khalid mahmood (2015) Assessment of the intrinsic vulnerability to groundwater contamination in Lahore, Pakistan. Pak J Sci Ind Res 58(1):8–16
Kumar A, Pramod Krishna A (2020) Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int 35:1149–1178. https://doi.org/10.1080/10106049.2018.1557259
doi: 10.1080/10106049.2018.1557259
Kumar P, Bansod BKS, Debnath SK, Thakur PK, Ghanshyam C (2015) Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environ Impact Assess Rev. https://doi.org/10.1016/j.eiar.2015.02.001
Li R, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45. https://doi.org/10.1016/j.scitotenv.2013.01.011
doi: 10.1016/j.scitotenv.2013.01.011
Li X, Gao Y, Qian H, Wu H (2017a) Groundwater vulnerability and contamination risk assessment of the Weining Plain, using a modified DRASTIC model and quantized pollution loading method. Arab J Geosci 10. https://doi.org/10.1007/s12517-017-3255-y
Li X, Gao Y, Qian H, Wu H (2017) Groundwater vulnerability and contamination risk assessment of the Weining Plain, using a modified DRASTIC model and quantized pollution loading method. Arab J Geosci 10:1–11. https://doi.org/10.1007/s12517-017-3255-y
doi: 10.1007/s12517-017-3255-y
Ma S, Mek T, Nd S, Sj L, Ht M, Ab S (2017) Current situation of aqueous arsenic contamination in Pakistan, focused on Sindh and Punjab Province, Pakistan: a review. J Pollut Eff Control 05. https://doi.org/10.4172/2375-4397.1000207
Mahmood K, Khan RM, Ashfaq M, Ahsan H, Shakoor Z, Tanveer M (2015) Assessment of the intrinsic vulnerability to groundwater contamination in Lahore, Pakistan. Pakistan. J Sci Ind Res Ser A Phys Sci 58:8–16
Maqsoom A, Aslam B, Khalil U, Ghorbanzadeh O, Ashraf H, Tufail RF, Farooq D, Blaschke T (2020) A GIS-based DRASTIC model and an adjusted DRASTIC model (DRASTICA) for groundwater susceptibility assessment along the China–Pakistan Economic Corridor (CPEC) Route. ISPRS Int J Geo-Information 9. https://doi.org/10.3390/ijgi9050332
Muhammad AM, Zhonghua T, Dawood AS, Earl B (2015) Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofis Int 54:67–81. https://doi.org/10.1016/j.gi.2015.04.003
doi: 10.1016/j.gi.2015.04.003
Neshat A, Pradhan B (2015) An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Nat Hazards 76:543–563. https://doi.org/10.1007/s11069-014-1503-y
doi: 10.1007/s11069-014-1503-y
Neshat A, Pradhan B, Pirasteh S, Shafri HZM (2014) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131. https://doi.org/10.1007/s12665-013-2690-7
doi: 10.1007/s12665-013-2690-7
Nobre RCM, Rotunno Filho OC, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94:277–292. https://doi.org/10.1016/j.jconhyd.2007.07.008
doi: 10.1016/j.jconhyd.2007.07.008
Nugraha GU, Gaol KL, Hartanto P, Bakti H (2020) Aquifer vulnerability: its protection and management - a case study in Pangkalpinang City, Indonesia. Int J Geophys 2020. https://doi.org/10.1155/2020/8887914
Pathak DR, Hiratsuka A (2011) An integrated GIS based fuzzy pattern recognition model to compute groundwater vulnerability index for decision making. J Hydro-Environ Res 5:63–77. https://doi.org/10.1016/j.jher.2009.10.015
doi: 10.1016/j.jher.2009.10.015
Piscopo, G (2001) Groundwater vulnerability map explanatory notes Groundwater vulnerability map explanatory notes Castlereagh Catchment." Centre for Natural Resources, NSW Department of Land and Water Conservation 18.
Podgorski JE, Eqani SAMAS, Khanam T, Ullah R, Shen H, Berg M (2017) Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci Adv 3. https://doi.org/10.1126/sciadv.1700935
Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779. https://doi.org/10.1007/s11069-013-0728-5
doi: 10.1007/s11069-013-0728-5
Qureshi AS, Gill MA, Sarwar A (2010) Sustainable groundwater management in Pakistan: challenges and pportunities. Irrig Drain 59:107–116. https://doi.org/10.1002/ird.455
doi: 10.1002/ird.455
Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inform 8:867–883. https://doi.org/10.1007/s12145-015-0220-8
doi: 10.1007/s12145-015-0220-8
Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742. https://doi.org/10.1007/s12517-012-0807-z
doi: 10.1007/s12517-012-0807-z
Ribeiro, Luís, Juan Carlos Pindo, and Luis Dominguez-Granda (2017) "Assessment of groundwater vulnerability in the Daule aquifer, Ecuador, using the susceptibility index method." Science of the total environment 574:1674-1683
Saaty (1990) An exposition on the AHP in reply to the paper “Remarks on the Analytic Hierarchy Process” on JSTOR. Manag Sci 36:259–268
doi: 10.1287/mnsc.36.3.259
Saaty TL (2008) Decision making with the analytic hierarchy process. Sci Iran 9:215–229. https://doi.org/10.1504/ijssci.2008.017590
doi: 10.1504/ijssci.2008.017590
Sahoo S, Chakraborty S, Pham QB, Sharifi E, Sammen SS, Vojtek M, … Linh NTT (2021) Recognition of district-wise groundwater stress zones using the GLDAS-2 catchment land surface model during lean season in the Indian state of West Bengal. Acta Geophys 69(1):175-198. https://link.springer.com/article/10.1007/s11600-020-00509-x
Saidi S, Bouri S, Ben Dhia H (2011) Analyse de sensibilité sous SIG de l’évaluation de la vulnérabilité des ressources en eaux de l’aquifère de Mahdia-Ksour Essaf, Tunisie: Étude de validité. Hydrol Sci J 56:288–304. https://doi.org/10.1080/02626667.2011.552886
doi: 10.1080/02626667.2011.552886
Sander P, Chesley MM, Minor TB (1996) Ground water assessment using remote sensing and GIS in a rural groundwater project in ghana: Lessons learned. Hydrogeol J 4:40–49. https://doi.org/10.1007/s100400050086
doi: 10.1007/s100400050086
Sener E, Sener S, Davraz A (2009) Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydrogeol J 17:2023–2035. https://doi.org/10.1007/s10040-009-0497-0
doi: 10.1007/s10040-009-0497-0
Shabbir R, Ahmad SS (2015) Use of geographic information system and water quality index to assess groundwater quality in Rawalpindi and Islamabad. Arab J Sci Eng 40:2033–2047. https://doi.org/10.1007/s13369-015-1697-7
doi: 10.1007/s13369-015-1697-7
Shahab A, Shihua Q, Rad S, Keita S, Khan M, Adnan S (2019) Groundwater vulnerability assessment using GIS-based DRASTIC method in the irrigated and coastal region of Sindh province, Pakistan. Hydrol Res 50:319–338. https://doi.org/10.2166/nh.2018.001
doi: 10.2166/nh.2018.001
Shakoor A, Zahid MK, Farid HU, Sultan M, Aftab AK, Ahmad I, Azmat M (2018) Groundwater vulnerability mapping in Faisalabad District using GIS based drastic model. MATEC Web Conf 246. https://doi.org/10.1051/matecconf/201824601001
Shirazi SM, Imran HM, Akib S, Yusop Z, Harun ZB (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ Earth Sci 70:2293–2304. https://doi.org/10.1007/s12665-013-2360-9
doi: 10.1007/s12665-013-2360-9
Shrestha S, Semkuyu DJ, Pandey VP (2016) Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Sci Total Environ 556:23–35. https://doi.org/10.1016/j.scitotenv.2016.03.021
doi: 10.1016/j.scitotenv.2016.03.021
Talib MA, Tang Z, Shahab A, Siddique J, Faheem M, Fatima M (2019) Hydrogeochemical characterization and suitability assessment of groundwater: a case study in central Sindh, Pakistan. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16050886
USGS (1968) Geological Survey Research 1968. US Geol. Surv. Prof. Pap.
Vojtek M, Vojteková J, Costache R, Pham QB, Lee S, Arshad A, … Anh DT (2021) Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomatics Nat Hazards Risk 12(1):1153-1180. https://www.tandfonline.com/doi/full/10.1080/19475705.2021.1912835
Wu H, Chen J, Qian H (2016) A modified DRASTIC model for assessing contamination risk of groundwater in the northern suburb of Yinchuan, China. Environ Earth Sci 75:1–10. https://doi.org/10.1007/s12665-015-5094-z
doi: 10.1007/s12665-015-5094-z