Performance of distinct microbial based solutions in a Campylobacter infection challenge model in poultry.
Campylobacter jejuni
Infection challenge
Microbiome
Probiotics
Journal
Animal microbiome
ISSN: 2524-4671
Titre abrégé: Anim Microbiome
Pays: England
ID NLM: 101759457
Informations de publication
Date de publication:
03 Jan 2022
03 Jan 2022
Historique:
received:
07
10
2021
accepted:
15
12
2021
entrez:
4
1
2022
pubmed:
5
1
2022
medline:
5
1
2022
Statut:
epublish
Résumé
Antibiotic growth promoters (AGPs) are commonly used within poultry production to improve feed conversion, bird growth, and reduce morbidity and mortality from clinical and subclinical diseases. Due to the association between AGP usage and rising antimicrobial resistance, the industry has explored new strategies including the use of probiotics and other microbial-based interventions to promote the development of a healthy microbiome in birds and mitigate against infections associated with food safety and food security. While previous studies have largely focused on the ability of probiotics to protect against Clostridium perfringens and Salmonella enterica, much less is known concerning their impact on Campylobacter jejuni, a near commensal of the chicken gut microbiome that nevertheless is a major cause of food poisoning in humans. Here we compare the efficacy of four microbial interventions (two single strain probiotics, the bacterium-Pediococcus acidilactici, and the yeast-Saccharomyces cerevisiae boulardii; and two complex, competitive exclusion, consortia-Aviguard and CEL) to bacitracin, a commonly used AGP, to modulate chicken gut microbiota and subsequently impact C. jejuni infection in poultry. Cecal samples were harvested at 30- and 39-days post hatch to assess Campylobacter burden and examine their impact on the gut microbiota. While the different treatments did not significantly decrease C. jejuni burden relative to the untreated controls, both complex consortia resulted in significant decreases relative to treatment with bacitracin. Analysis of 16S rDNA profiles revealed a distinct microbial signature associated with each microbial intervention. For example, treatment with Aviguard and CEL increased the relative abundance of Bacteroidaceae and Rikenellaceae respectively. Furthermore, Aviguard promoted a less complex microbial community compared to other treatments. Depending upon the individual needs of the producer, our results illustrate the potential of each microbial interventions to serve flock-specific requirements.
Sections du résumé
BACKGROUND
BACKGROUND
Antibiotic growth promoters (AGPs) are commonly used within poultry production to improve feed conversion, bird growth, and reduce morbidity and mortality from clinical and subclinical diseases. Due to the association between AGP usage and rising antimicrobial resistance, the industry has explored new strategies including the use of probiotics and other microbial-based interventions to promote the development of a healthy microbiome in birds and mitigate against infections associated with food safety and food security. While previous studies have largely focused on the ability of probiotics to protect against Clostridium perfringens and Salmonella enterica, much less is known concerning their impact on Campylobacter jejuni, a near commensal of the chicken gut microbiome that nevertheless is a major cause of food poisoning in humans.
RESULTS
RESULTS
Here we compare the efficacy of four microbial interventions (two single strain probiotics, the bacterium-Pediococcus acidilactici, and the yeast-Saccharomyces cerevisiae boulardii; and two complex, competitive exclusion, consortia-Aviguard and CEL) to bacitracin, a commonly used AGP, to modulate chicken gut microbiota and subsequently impact C. jejuni infection in poultry. Cecal samples were harvested at 30- and 39-days post hatch to assess Campylobacter burden and examine their impact on the gut microbiota. While the different treatments did not significantly decrease C. jejuni burden relative to the untreated controls, both complex consortia resulted in significant decreases relative to treatment with bacitracin. Analysis of 16S rDNA profiles revealed a distinct microbial signature associated with each microbial intervention. For example, treatment with Aviguard and CEL increased the relative abundance of Bacteroidaceae and Rikenellaceae respectively. Furthermore, Aviguard promoted a less complex microbial community compared to other treatments.
CONCLUSIONS
CONCLUSIONS
Depending upon the individual needs of the producer, our results illustrate the potential of each microbial interventions to serve flock-specific requirements.
Identifiants
pubmed: 34980288
doi: 10.1186/s42523-021-00157-6
pii: 10.1186/s42523-021-00157-6
pmc: PMC8722297
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2Subventions
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2019-06852
Organisme : Alberta Livestock and Meat Agency
ID : Alberta Livestock and Meat Agency
Organisme : Ontario Ministry of Agriculture, Food and Rural Affairs
ID : Ontario Ministry of Agriculture, Food and Rural Affairs
Organisme : Canadian Poultry Research Council
ID : Canadian Poultry Research Council
Organisme : Lallemand SAS
ID : Lallemand SAS
Informations de copyright
© 2021. The Author(s).
Références
Front Microbiol. 2018 May 22;9:927
pubmed: 29872425
Appl Environ Microbiol. 2018 Jan 2;84(2):
pubmed: 29101192
Sci Rep. 2013;3:2191
pubmed: 23846617
PLoS One. 2013 Jun 07;8(6):e65790
pubmed: 23762426
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Poult Sci. 1998 Mar;77(3):405-10
pubmed: 9521452
J Gen Appl Microbiol. 2012;58(6):405-12
pubmed: 23337575
Annu Rev Microbiol. 2012;66:429-52
pubmed: 22803797
Am J Vet Res. 2016 May;77(5):514-26
pubmed: 27111019
Microb Cell Fact. 2009 Jan 08;8:3
pubmed: 19133115
Benef Microbes. 2017 Apr 26;8(2):179-192
pubmed: 28008784
Poult Sci. 2019 Jun 1;98(6):2405-2413
pubmed: 30715508
Poult Sci. 2012 Aug;91(8):1825-32
pubmed: 22802174
Anim Health Res Rev. 2017 Jun;18(1):26-45
pubmed: 28485263
Future Microbiol. 2009 Mar;4(2):189-200
pubmed: 19257846
Front Vet Sci. 2019 Jun 25;6:201
pubmed: 31294039
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7600-5
pubmed: 17442750
Vaccine. 2017 Oct 27;35(45):6076-6082
pubmed: 28987440
Poult Sci. 2002 Nov;81(11):1653-60
pubmed: 12455592
Microorganisms. 2019 Nov 21;7(12):
pubmed: 31766507
Can J Vet Res. 2011 Oct;75(4):298-307
pubmed: 22468028
Cell. 2018 Sep 6;174(6):1388-1405.e21
pubmed: 30193112
Front Microbiol. 2019 Oct 10;10:2303
pubmed: 31649644
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
PLoS One. 2018 Mar 23;13(3):e0194825
pubmed: 29570728
PLoS One. 2013 Apr 22;8(4):e61217
pubmed: 23630581
Pak J Pharm Sci. 2014 Mar;27(2):405-15
pubmed: 24577933
mBio. 2014 Apr 22;5(2):e00889
pubmed: 24757212
Genome Biol. 2014;15(12):550
pubmed: 25516281
Res Vet Sci. 2019 Apr;123:124-128
pubmed: 30641471
Biomed Res Int. 2018 Feb 21;2018:1879168
pubmed: 29682522
Clin Microbiol Rev. 2003 Apr;16(2):175-88
pubmed: 12692092
Virulence. 2013 Apr 1;4(3):230-40
pubmed: 23406779
Poult Sci. 2003 Apr;82(4):627-31
pubmed: 12710484
Front Cell Infect Microbiol. 2016 Nov 22;6:154
pubmed: 27921008
Front Microbiol. 2019 Jan 14;9:3344
pubmed: 30692982
Acta Biomed. 2011 Dec;82(3):177-80
pubmed: 22783712
J Appl Microbiol. 2010 Oct;109(4):1329-38
pubmed: 20497278
Inflamm Bowel Dis. 2016 May;22(5):1137-50
pubmed: 27070911
Poult Sci. 1997 Sep;76(9):1227-31
pubmed: 9276884
Vet Rec. 2020 Sep 19;187(6):e45
pubmed: 32327553
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Gut Microbes. 2017 May 4;8(3):253-267
pubmed: 28609252
Front Microbiol. 2015 Dec 01;6:1336
pubmed: 26648920
Poult Sci. 1997 Jun;76(6):849-56
pubmed: 9181618
Int J Mol Sci. 2009 Aug 12;10(8):3531-46
pubmed: 20111681
Microbiome. 2018 May 12;6(1):88
pubmed: 29753324
Avian Pathol. 2018 Oct;47(5):443-454
pubmed: 29874925
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
Microorganisms. 2019 Aug 22;7(9):
pubmed: 31443457
Clin Exp Gastroenterol. 2015 Aug 14;8:237-55
pubmed: 26316791
Poult Sci. 2020 Apr;99(4):2275-2285
pubmed: 32241513
Avian Dis. 1998 Jul-Sep;42(3):579-84
pubmed: 9777159
Diabetologia. 2012 Aug;55(8):2285-94
pubmed: 22572803
Int J Antimicrob Agents. 2013 Feb;41(2):149-55
pubmed: 23294932
Avian Dis. 2000 Jul-Sep;44(3):715-20
pubmed: 11007026
J Appl Microbiol. 2015 Dec;119(6):1515-26
pubmed: 26425940
Sci Rep. 2019 Feb 21;9(1):2506
pubmed: 30792439
FEMS Microbiol Lett. 2014 Nov;360(2):100-12
pubmed: 25263745
Front Microbiol. 2017 Mar 23;8:487
pubmed: 28386253
PLoS One. 2014 Mar 21;9(3):e91941
pubmed: 24657972
mSystems. 2015 Dec 22;1(1):
pubmed: 27822518
PeerJ. 2016 Oct 18;4:e2584
pubmed: 27781170
Sci Rep. 2019 Dec 24;9(1):19797
pubmed: 31875037
Vector Borne Zoonotic Dis. 2012 Feb;12(2):89-98
pubmed: 22133236
Front Immunol. 2020 Jun 09;11:906
pubmed: 32582143
Can J Microbiol. 2003 Jul;49(7):472-8
pubmed: 14569288
J Funct Foods. 2017 Jun;33:194-201
pubmed: 30416539
Animals (Basel). 2021 May 31;11(6):
pubmed: 34072694
Sci Rep. 2018 Feb 1;8(1):2183
pubmed: 29391457
PeerJ. 2017 Jul 20;5:e3587
pubmed: 28740754
Microbiome. 2018 May 17;6(1):90
pubmed: 29773078
NPJ Biofilms Microbiomes. 2018 Nov 9;4:27
pubmed: 30455975
Microb Biotechnol. 2019 Nov;12(6):1109-1125
pubmed: 31006995
Poult Sci. 2013 Mar;92(3):671-83
pubmed: 23436518
Syst Appl Microbiol. 2003 Jun;26(2):182-8
pubmed: 12866844
Poult Sci. 2019 Jan 1;98(1):128-135
pubmed: 30053181
Int J Food Microbiol. 2010 Oct 15;143(3):87-102
pubmed: 20801536
Food Microbiol. 2016 Feb;53(Pt B):104-9
pubmed: 26678136
Anim Health Res Rev. 2002 Dec;3(2):95-105
pubmed: 12665109
Clin Microbiol Rev. 2007 Oct;20(4):593-621
pubmed: 17934076
PLoS One. 2015 Jul 10;10(7):e0131978
pubmed: 26161743