Mechanically evoked defensive attack is controlled by GABAergic neurons in the anterior hypothalamic nucleus.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
02
11
2020
accepted:
11
11
2021
pubmed:
5
1
2022
medline:
7
4
2022
entrez:
4
1
2022
Statut:
ppublish
Résumé
Innate defensive behaviors triggered by environmental threats are important for animal survival. Among these behaviors, defensive attack toward threatening stimuli (for example, predators) is often the last line of defense. How the brain regulates defensive attack remains poorly understood. Here we show that noxious mechanical force in an inescapable context is a key stimulus for triggering defensive attack in laboratory mice. Mechanically evoked defensive attacks were abrogated by photoinhibition of vGAT
Identifiants
pubmed: 34980925
doi: 10.1038/s41593-021-00985-4
pii: 10.1038/s41593-021-00985-4
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
72-85Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Fanselow, M. S. & Lester, L. S. A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Evolution and Learning, 185–211 (Lawrence Erlbaum Associates, 1988).
De Franceschi, G., Vivattanasarn, T., Saleem, A. B. & Solomon, S. G. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26, 2150–2154 (2016).
pubmed: 27498569
doi: 10.1016/j.cub.2016.06.006
Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).
pubmed: 24120636
doi: 10.1016/j.cub.2013.08.015
Blanchard, R. J. & Blanchard, D. C. Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry 13, S3–S14 (1989).
pubmed: 2694228
doi: 10.1016/0278-5846(89)90105-X
Silva, B. A. et al. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16, 1731–1733 (2013).
pubmed: 24212674
pmcid: 4194278
doi: 10.1038/nn.3573
Wang, L., Chen, I. Z. & Lin, D. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015).
pubmed: 25754823
pmcid: 4368499
doi: 10.1016/j.neuron.2014.12.025
Kunwar, P. S. et al. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 4, e06633 (2015).
Kennedy, A. et al. Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586, 730–734 (2020).
pubmed: 32939094
pmcid: 7606611
doi: 10.1038/s41586-020-2728-4
Wang, W. et al. Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron 109, 1848–1860 (2021).
pubmed: 33861942
doi: 10.1016/j.neuron.2021.03.033
Wei, P. et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).
pubmed: 25854147
doi: 10.1038/ncomms7756
Shang, C. et al. BRAIN CIRCUITS. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477 (2015).
pubmed: 26113723
doi: 10.1126/science.aaa8694
Tovote, P. et al. Midbrain circuits for defensive behaviour. Nature 534, 206–212 (2016).
pubmed: 27279213
doi: 10.1038/nature17996
Evans, D. A. et al. A synaptic threshold mechanism for computing escape decisions. Nature 558, 590–594 (2018).
pubmed: 29925954
pmcid: 6235113
doi: 10.1038/s41586-018-0244-6
Shang, C. et al. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9, 1232 (2018).
pubmed: 29581428
pmcid: 5964329
doi: 10.1038/s41467-018-03580-7
Salay, L. D., Ishiko, N. & Huberman, A. D. A midline thalamic circuit determines reactions to visual threat. Nature 557, 183–189 (2018).
pubmed: 29720647
pmcid: 8442544
doi: 10.1038/s41586-018-0078-2
Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).
pubmed: 26186190
pmcid: 4512641
doi: 10.1016/j.cell.2015.05.057
Gross, C. T. & Canteras, N. S. The many paths to fear. Nat. Rev. Neurosci. 13, 651–658 (2012).
pubmed: 22850830
doi: 10.1038/nrn3301
Branco, T. & Redgrave, P. The neural basis of escape behavior in vertebrates. Annu. Rev. Neurosci. 43, 417–439 (2020).
pubmed: 32259462
doi: 10.1146/annurev-neuro-100219-122527
Canteras, N. S., Chiavegatto, S., Ribeiro do Valle, L. E. & Swanson, L. W. Severe reduction of rat defensive behavior to a predator by discrete hypothalamic chemical lesions. Brain Res. Bull. 44, 297–305 (1997).
pubmed: 9323445
doi: 10.1016/S0361-9230(97)00141-X
Canteras, N. S. The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacol. Biochem. Behav. 71, 481–491 (2002).
pubmed: 11830182
doi: 10.1016/S0091-3057(01)00685-2
Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. Hypothalamic sites responding to predator threats—the role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. Eur. J. Neurosci. 28, 1003–1015 (2008).
pubmed: 18691328
doi: 10.1111/j.1460-9568.2008.06392.x
Paschoalin-Maurin, T. et al. The rodent-versus-wild snake paradigm as a model for studying anxiety- and panic-like behaviors: face, construct and predictive validities. Neuroscience 369, 336–349 (2018).
pubmed: 29183829
doi: 10.1016/j.neuroscience.2017.11.031
Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).
pubmed: 15629699
doi: 10.1016/j.neuron.2004.12.015
Cavanaugh, D. J. et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc. Natl Acad. Sci. USA 106, 9075–9080 (2009).
pubmed: 19451647
pmcid: 2683885
doi: 10.1073/pnas.0901507106
Olson, W. et al. Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors. eLife 6, e29507 (2017).
Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).
pubmed: 15908920
doi: 10.1038/nmeth762
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
pubmed: 20023653
doi: 10.1038/nn.2467
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).
pubmed: 21745644
pmcid: 3134797
doi: 10.1016/j.neuron.2011.05.028
Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. NEUROSCIENCE. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).
pubmed: 26113638
pmcid: 4764398
doi: 10.1126/science.aaa7484
Falkner, A. L. et al. Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106, 637–648 (2020).
pubmed: 32164875
pmcid: 7571490
doi: 10.1016/j.neuron.2020.02.014
Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).
pubmed: 24949967
pmcid: 4123133
doi: 10.1016/j.cell.2014.05.017
Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).
pubmed: 31209382
doi: 10.1038/s41592-019-0435-6
Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).
pubmed: 22258508
pmcid: 3271183
doi: 10.1038/nature10754
Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).
pubmed: 17179932
doi: 10.1038/nmeth999
Huang, T. et al. Identifying the pathways required for coping behaviours associated with sustained pain. Nature 565, 86–90 (2019).
pubmed: 30532001
doi: 10.1038/s41586-018-0793-8
Chiang, M. C. et al. Divergent neural pathways emanating from the lateral parabrachial nucleus mediate distinct components of the pain response. Neuron 106, 927–939 (2020).
pubmed: 32289251
doi: 10.1016/j.neuron.2020.03.014
Choi, S. et al. Parallel ascending spinal pathways for affective touch and pain. Nature 587, 258–263 (2020).
pubmed: 33116307
pmcid: 7666110
doi: 10.1038/s41586-020-2860-1
Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).
pubmed: 21307935
pmcid: 3075820
doi: 10.1038/nature09736
Leroy, F. et al. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564, 213–218 (2018).
pubmed: 30518859
pmcid: 6364572
doi: 10.1038/s41586-018-0772-0
Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).
pubmed: 21937988
pmcid: 3192931
doi: 10.1038/nature10437
Risold, P. Y., Canteras, N. S. & Swanson, L. W. Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 348, 1–40 (1994).
pubmed: 7814679
doi: 10.1002/cne.903480102
Park, S. G. et al. Medial preoptic circuit induces hunting-like actions to target objects and prey. Nat. Neurosci. 21, 364–372 (2018).
pubmed: 29379117
doi: 10.1038/s41593-018-0072-x
Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).
pubmed: 20478258
pmcid: 2873972
doi: 10.1016/j.cell.2010.03.037
Wang, Y. et al. Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors. Nat. Commun. 9, 2041 (2018).
pubmed: 29795268
pmcid: 5966455
doi: 10.1038/s41467-018-04324-3
Lischinsky, J. E. & Lin, D. Neural mechanisms of aggression across species. Nat. Neurosci. 23, 1317–1328 (2020).
pubmed: 33046890
doi: 10.1038/s41593-020-00715-2
Olivier, B., Olivier-Aardema, R. & Wiepkema, P. R. Effect of anterior hypothalamic and mammillary area lesions on territorial aggressive behaviour in male rats. Behav. Brain Res. 9, 59–81 (1983).
pubmed: 6411099
doi: 10.1016/0166-4328(83)90014-1
Fuchs, S. A., Edinger, H. M. & Siegel, A. The role of the anterior hypothalamus in affective defense behavior elicited from the ventromedial hypothalamus of the cat. Brain Res. 330, 93–107 (1985).
pubmed: 4039214
doi: 10.1016/0006-8993(85)90010-1
Delville, Y., De Vries, G. J. & Ferris, C. F. Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav. Evol. 55, 53–76 (2000).
pubmed: 10838477
doi: 10.1159/000006642
Gobrogge, K. L., Liu, Y., Jia, X. & Wang, Z. Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J. Comp. Neurol. 502, 1109–1122 (2007).
pubmed: 17444499
doi: 10.1002/cne.21364
Goodson, J. L., Kelly, A. M., Kingsbury, M. A. & Thompson, R. R. An aggression-specific cell type in the anterior hypothalamus of finches. Proc. Natl Acad. Sci. USA 109, 13847–13852 (2012).
pubmed: 22872869
pmcid: 3427066
doi: 10.1073/pnas.1207995109
Lee, H. et al. Scalable control of mounting and attack by Esr1
pubmed: 24739975
pmcid: 4098836
doi: 10.1038/nature13169
Falkner, A. L., Grosenick, L., Davidson, T. J., Deisseroth, K. & Lin, D. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19, 596–604 (2016).
pubmed: 26950005
pmcid: 4853470
doi: 10.1038/nn.4264
Yang, T. et al. Social control of hypothalamus-mediated male aggression. Neuron 95, 955–970 (2017).
pubmed: 28757304
pmcid: 5648542
doi: 10.1016/j.neuron.2017.06.046
Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2001).
Chen, J. et al. A vagal-NTS neural pathway that stimulates feeding. Curr. Biol. 30, 3986–3998 (2020).
pubmed: 32822608
doi: 10.1016/j.cub.2020.07.084
Liu, Z. et al. IGF1-dependent synaptic plasticity of mitral cells in olfactory memory during social learning. Neuron 95, 106–122 (2017).
pubmed: 28683263
pmcid: 5559288
doi: 10.1016/j.neuron.2017.06.015