Genetic diagnosis of basal ganglia disease in childhood.
Journal
Developmental medicine and child neurology
ISSN: 1469-8749
Titre abrégé: Dev Med Child Neurol
Pays: England
ID NLM: 0006761
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
revised:
07
11
2021
received:
23
03
2021
accepted:
08
11
2021
pubmed:
7
1
2022
medline:
11
5
2022
entrez:
6
1
2022
Statut:
ppublish
Résumé
To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.
Substances chimiques
DNA, Mitochondrial
0
Types de publication
Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
743-752Informations de copyright
© 2022 Mac Keith Press.
Références
Van Cauter S, Severino M, Ammendola R, Van Berkel B, Vavro H, van den Hauwe L, Rumboldt Z. Bilateral lesions of the basal ganglia and thalami (central grey matter)-pictorial review. Neuroradiology. 2020;62:1565-1605.
Mohammad, S. S., Angiti, R. R., Biggin, A., Morales-Briceño, H., Goetti, R., Perez-Dueñas, B., et al, Basal Ganglia MRI Study Group. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders. Brain Commun. 2020;2(2):fcaa178.
Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol. 2016;79:190-203
Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 2017;171:1-11.
Rice GI, Kitabayashi N, Barth M, et al. Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease. Neuropediatrics. 2017;48:166-84.
Stenton SL, Prokisch H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine. 2020; 56:102784.
de Beaurepaire I, Grévent D, Rio M, et al. High predictive value of brain MRI imaging in primary mitochondrial respiratory chain deficiency. J Med Genet J Med Genet. 2018;55:378-383.
Alves CAPF, Teixeira SR, Martin-Saavedra JS, et al. Pediatric Leigh Syndrome: Neuroimaging Features and Genetic Correlations. Ann Neurol. 2020;88:218-32.
Rice GI, Ayuk LA, Gavazzi F, Adang LA, Eyck L Van Seabra L, et al. Genetic and phenotypic spectrum associated with IFIH1 gain - of - function. Hum Mutat. 2020;41:837-849
Marti-Sanchez L, Baide-Mairena H, Marcé-Grau A, Pons R, et al. Delineating the neurological phenotype in children with defects in the ECHS1 or HIBCH gene. J Inherit Metab Dis. 2020 Jul 17. doi: https://doi.org/10.1002/jimd.12288. [Epub ahead of print].
Marti-Sanchez L, Ortigoza-Escobar JD, Darling A, et al. Hypermanganesemia due to mutations in SLC39A14: further insights into Mn deposition in the central nervous system.Orphanet J Rare Dis. 2018; 30;28.
Ortigoza-Escobar JD, Alfadhel M, Molero-Luis M, et al. Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors. Ann Neurol. 2017;82:317-30.
Baide-Mairena H, Gaudó P, Marti-Sánchez L, Emperador S, et al. Mutations in the mitochondrial complex I assembly factor NDUFAF6 cause isolated bilateral striatal necrosis and progressive dystonia in childhood. Mol Genet Metab. 2019;126:250-258.
Masnada S, Martinelli D, Correa-Vela M, et al. PRKRA-Related Disorders: Bilateral Striatal Degeneration in Addition to DYT16 Spectrum. Mov Disord. 2021 Feb 19. doi: https://doi.org/10.1002/mds.28492. [Epub ahead of print].
RStudio Team. RStudio: Integrated Development Environment for R [Internet]. Boston, MA: RStudio, Inc; 2020. Available from: http://www.rstudio.com/
Hennig C. fpc: Flexible Procedures for Clustering [Internet]. 2020. Available from: https://www.unibo.it/sitoweb/christian.hennig/en/
Witters P, Saada A, Honzik T, et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet Med. 2018; 20:444-451.
Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, et al. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genet. 2016;12:1-31.
Wei Y, Cui L, Peng B. Mitochondrial DNA mutations in late-onset Leigh syndrome. J Neurol. 2018 Oct;265(10):2388-2395.
Zhong, S., Wen, S., Qiu, Y., Yu, Y., Xin, L., He, Y., et al.,. Bilateral striatal necrosis due to homoplasmic mitochondrial 3697G>A mutation presents with incomplete penetrance and sex bias. Mol Genet Genomic Med. 2019;7(3):e541. doi:https://doi.org/10.1002/mgg3.541
La Morgia, C., Caporali, L., Gandini, F., Olivieri, A., Toni, F., Nassetti, S., et al., (2014). Association of the mtDNA m.4171C>A/MT-ND1 mutation with both optic neuropathy and bilateral brainstem lesions. BMC Neurol. 2014;14:116.
van Dongen S, Brown RM, Brown GK, Thorburn DR, Boneh A. Thiamine-Responsive and Non-responsive Patients with PDHC-E1 Deficiency: A Retrospective Assessment. JIMD Rep. 2015;15:13-27.
Whitaker WRJ, Faull RLM, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ. Comparative distribution of voltage-gated sodium channel proteins in human brain. Mol Brain Res. 2001;88(1-2):37-53.
Danti FR, Galosi S, Romani M, et al. GNAO1 encephalopathy: Broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3(2):e143.
Lemmon ME, Lavenstein B, Applegate CD, Hamosh A, Tekes A, Singer HS. A novel presentation of DYT 16: acute onset in infancy and association with MRI abnormalities. Mov Disord. 2013;28:1937-1938.
Hol EM, Pekny M. ScienceDirect Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121-30.
Curiel J, Bey GR, Takanohashi A, Bugiani M, et al. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet. 2017;26:4506-18.
Howell KB, McMahon JM, Carvill GL, et al. SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85:958-966.
Lal D, Becker K, Motameny S, Altmüller J, Thiele H, Nürnberg P, et al. Homozygous missense mutation of NDUFV1 as the cause of infantile bilateral striatal necrosis. Neurogenetics. 2013;14:85-7.