Integral equation models for solvent in macromolecular crystals.


Journal

The Journal of chemical physics
ISSN: 1089-7690
Titre abrégé: J Chem Phys
Pays: United States
ID NLM: 0375360

Informations de publication

Date de publication:
07 Jan 2022
Historique:
entrez: 9 1 2022
pubmed: 10 1 2022
medline: 29 1 2022
Statut: ppublish

Résumé

The solvent can occupy up to ∼70% of macromolecular crystals, and hence, having models that predict solvent distributions in periodic systems could improve the interpretation of crystallographic data. Yet, there are few implicit solvent models applicable to periodic solutes, and crystallographic structures are commonly solved assuming a flat solvent model. Here, we present a newly developed periodic version of the 3D-reference interaction site model (RISM) integral equation method that is able to solve efficiently and describe accurately water and ion distributions in periodic systems; the code can compute accurate gradients that can be used in minimizations or molecular dynamics simulations. The new method includes an extension of the Ornstein-Zernike equation needed to yield charge neutrality for charged solutes, which requires an additional contribution to the excess chemical potential that has not been previously identified; this is an important consideration for nucleic acids or any other charged system where most or all the counter- and co-ions are part of the "disordered" solvent. We present several calculations of proteins, RNAs, and small molecule crystals to show that x-ray scattering intensities and the solvent structure predicted by the periodic 3D-RISM solvent model are in closer agreement with the experiment than are intensities computed using the default flat solvent model in the refmac5 or phenix refinement programs, with the greatest improvement in the 2 to 4 Å range. Prospects for incorporating integral equation models into crystallographic refinement are discussed.

Identifiants

pubmed: 34998331
doi: 10.1063/5.0070869
pmc: PMC8889494
doi:

Substances chimiques

Ions 0
Macromolecular Substances 0
Solutions 0
Solvents 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

014801

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM122086
Pays : United States

Références

Acta Crystallogr B. 1990 Feb 1;46 ( Pt 1):63-9
pubmed: 2302327
J Comput Chem. 2004 Jul 15;25(9):1157-74
pubmed: 15116359
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67
pubmed: 21460454
J Chem Theory Comput. 2014 Jan 14;10(1):289-297
pubmed: 24659926
Acta Crystallogr D Biol Crystallogr. 1998 Jul 1;54(Pt 4):522-46
pubmed: 9761848
J Chem Theory Comput. 2010 Mar 9;6(3):607-624
pubmed: 20440377
Annu Rev Biophys Biomol Struct. 2003;32:207-35
pubmed: 12543706
J Am Chem Soc. 2005 Nov 9;127(44):15334-5
pubmed: 16262373
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877
pubmed: 31588918
J Chem Theory Comput. 2020 Apr 14;16(4):2864-2876
pubmed: 32176492
J Am Chem Soc. 2007 Dec 5;129(48):14981-8
pubmed: 17990882
Biochemistry. 2005 Aug 30;44(34):11315-22
pubmed: 16114868
Science. 1999 Apr 16;284(5413):473-6
pubmed: 10205052
PLoS Biol. 2008 Sep 30;6(9):e234
pubmed: 18834200
J Mol Biol. 1994 Nov 11;243(5):906-18
pubmed: 7966308
J Phys Chem B. 2008 Jan 24;112(3):911-7
pubmed: 18171052
Biophys J. 2015 Jun 16;108(12):2886-95
pubmed: 26083928
Methods Enzymol. 2009;469:391-410
pubmed: 20946800
FEBS J. 2014 Sep;281(18):4046-60
pubmed: 25040949
J Am Chem Soc. 2019 Feb 13;141(6):2435-2445
pubmed: 30632365
Annu Rev Biophys. 2019 May 6;48:275-296
pubmed: 30857399
Biophys J. 2014 Feb 18;106(4):883-94
pubmed: 24559991
J Phys Chem B. 2011 Jan 27;115(3):547-56
pubmed: 21190358
Acta Crystallogr D Biol Crystallogr. 1997 Sep 1;53(Pt 5):551-7
pubmed: 15299886
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21
pubmed: 20057044
Biophys J. 2007 Jun 1;92(11):3817-29
pubmed: 17351000
J Phys Chem B. 2008 Jul 31;112(30):9020-41
pubmed: 18593145
Elife. 2015 Sep 30;4:
pubmed: 26422513
J Mol Biol. 1999 Sep 17;292(2):275-87
pubmed: 10493875
J Chem Theory Comput. 2011 Sep 13;7(9):2886-2902
pubmed: 21921995
J Am Chem Soc. 2010 Nov 24;132(46):16334-6
pubmed: 21047071
J Am Chem Soc. 2014 Mar 12;136(10):4040-7
pubmed: 24548168
J Am Chem Soc. 2015 Nov 25;137(46):14705-15
pubmed: 26517731
Methods Enzymol. 2009;469:433-63
pubmed: 20946802
J Phys Chem B. 2010 May 20;114(19):6464-71
pubmed: 20423056
J Chem Phys. 2013 Aug 28;139(8):084119
pubmed: 24006986
Nat Struct Mol Biol. 2005 Jan;12(1):82-9
pubmed: 15580277
J Chem Phys. 2016 Jun 7;144(21):214105
pubmed: 27276943
Crystals (Basel). 2021 Jul;11(7):
pubmed: 34745655
Acta Crystallogr D Struct Biol. 2020 Jan 1;76(Pt 1):51-62
pubmed: 31909743
J Chem Phys. 2011 May 21;134(19):194102
pubmed: 21599039
Science. 2007 Mar 16;315(5818):1549-53
pubmed: 17363667
J Chem Phys. 2015 Mar 21;142(11):114107
pubmed: 25796231
J Chem Phys. 2008 Dec 21;129(23):236101
pubmed: 19102559
J Phys Chem B. 2011 Mar 17;115(10):2408-16
pubmed: 21332117
Chem Rev. 2015 Jul 8;115(13):6312-56
pubmed: 26073187
J Comput Chem. 2003 Jul 15;24(9):1016-25
pubmed: 12759902

Auteurs

Jonathon G Gray (JG)

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

George M Giambaşu (GM)

Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, USA.

David A Case (DA)

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.

Tyler Luchko (T)

Department of Physics and Astronomy, California State University, Northridge, California 91330, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH