Forest tree growth is linked to mycorrhizal fungal composition and function across Europe.
Journal
The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086
Informations de publication
Date de publication:
05 2022
05 2022
Historique:
received:
20
09
2021
accepted:
17
11
2021
revised:
10
11
2021
pubmed:
11
1
2022
medline:
28
4
2022
entrez:
10
1
2022
Statut:
ppublish
Résumé
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Identifiants
pubmed: 35001085
doi: 10.1038/s41396-021-01159-7
pii: 10.1038/s41396-021-01159-7
pmc: PMC9038731
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1327-1336Subventions
Organisme : Medical Research Council
ID : MR/S017240/1
Pays : United Kingdom
Organisme : NERC Environmental Bioinformatics Centre (NEBC)
ID : NE/ K006339/1
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : PZ00P3_179900
Informations de copyright
© 2021. The Author(s).
Références
Vittadini C. Monographia lycoperdineorum. Augustae Taurinorum, Torino, 1842.
Frank B. On the nutrition of certain trees by underground fungi based on root symbiosis. Plant Biol. 1885;3:128–45.
Gadgil RL, Gadgil P. Mycorrhiza and litter decomposition. Nature 1971;233:133–133.
pubmed: 16063238
doi: 10.1038/233133a0
Harley J. Problems of mycotrophy. London: Academic Press; 1975.
Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. N. Phytol. 2015;205:1525–36.
doi: 10.1111/nph.13208
Crowther TW, Van den Hoogen J, Wan J, Mayes MA, Keiser A, Mo L, et al. The global soil community and its influence on biogeochemistry. Science 2019;365:eaav0550.
pubmed: 31439761
doi: 10.1126/science.aav0550
Bueno CG, Moora M, Gerz M, Davison J, Öpik M, Pärtel M, et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob Ecol Biogeo. 2017;26:690–9.
doi: 10.1111/geb.12582
Steidinger BS, Crowther TW, Liang J, Nuland MEV, Werner GDA, Reich PB, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 2019;569:404–8.
pubmed: 31092941
doi: 10.1038/s41586-019-1128-0
Dixon RK, Garrett HE, Cox GS, Marx DH, Sander IL. Inoculation of three Quercus species with eleven isolates of ectomycorrhizal fungi. I. inoculation success and seedling growth relationships. Science. 1984;30:364–72.
Sim M-Y, Eom A-H. Effects of ectomycorrhizal fungi on growth of seedlings of Pinus densiflora. Mycobiology 2006;34:191–5.
pubmed: 24039497
pmcid: 3769572
doi: 10.4489/MYCO.2006.34.4.191
Dickie IA. Host preference, niches and fungal diversity. N. Phytol. 2007;174:230–3.
doi: 10.1111/j.1469-8137.2007.02055.x
Alberton O, Kuyper TW, Gorissen A. Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO
doi: 10.1007/s11104-007-9306-5
Karst J, Marczak L, Jones MD, Turkington R. The mutualism–parasitism continuum in ectomycorrhizas: a quantitative assessment using meta-analysis. Ecology 2008;89:1032–42.
pubmed: 18481528
doi: 10.1890/07-0823.1
Dalong M, Luhe W, Guoting Y, Liqiang M, Chun L. Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination. Braz J Microbiol. 2011;42:1197–203.
pubmed: 24031742
pmcid: 3768799
doi: 10.1590/S1517-83822011000300045
Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 2017;355:181–4.
pubmed: 28082590
doi: 10.1126/science.aai8212
Read DJ, Perez‐Moreno J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? N. Phytol. 2003;157:475–92.
doi: 10.1046/j.1469-8137.2003.00704.x
Buscot F, Weber G, Oberwinkler F. Interactions between Cylindrocarpon destructans and ectomycorrhizas of Picea abies with Laccaria laccata and Paxillus involutes. Trees. 1992;6:83–90.
doi: 10.1007/BF00226585
Morin C, Samson J, Dessureault M. Protection of black spruce seedlings against Cylindrocladium root rot with ectomycorrhizal fungi. Can J Bot. 1999;77:169–74.
Abuzinadah RA, Read DJ. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. N. Phytol. 1989;112:55–60.
doi: 10.1111/j.1469-8137.1989.tb00308.x
Jongbloed RH, Clement JMAM, Borst-Pauwels GWFH. Kinetics of NH4
doi: 10.1111/j.1399-3054.1991.tb00116.x
Selosse M, Bouchard D, Martin F, Tacon F. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can J Res. 2000;30:360–71.
doi: 10.1139/x99-221
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Let. 2010;13:394–407.
doi: 10.1111/j.1461-0248.2009.01430.x
Kipfer T, Wohlgemuth T, Heijden MGA, van der, Ghazoul J, Egli S. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal Fungi. PLoS ONE. 2012;7:e35275.
pubmed: 22496914
pmcid: 3320646
doi: 10.1371/journal.pone.0035275
Pena R, Polle A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J. 2014;8:321–30.
pubmed: 24030593
doi: 10.1038/ismej.2013.158
Mueller RC, Scudder CM, Whitham TG, Gehring CA. Legacy effects of tree mortality mediated by ectomycorrhizal fungal communities. N. Phytol. 2019;224:155–65.
doi: 10.1111/nph.15993
Policelli N, Horton TR, Hudon AT, Patterson TR, Bhatnagar JM. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front Glob Change. 2020;3:97.
doi: 10.3389/ffgc.2020.00097
Bever JD, Schultz PA, Pringle A, Morton JB. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of Why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. BioScience 2001;51:923–31.
doi: 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2
Delgado‐Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104:936–46.
doi: 10.1111/1365-2745.12585
Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. PNAS 2016;113:8033–40.
pubmed: 27432978
pmcid: 4961168
doi: 10.1073/pnas.1601070113
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016;353:1272–7.
pubmed: 27634532
doi: 10.1126/science.aaf4507
Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol. 2016;1:1–12.
doi: 10.1038/s41559-016-0015
Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.
pubmed: 29662222
doi: 10.1038/s41559-018-0519-1
Lindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, et al. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol Lett. 2021;24:1341–51.
pubmed: 33934481
doi: 10.1111/ele.13746
Rineau F, Courty P-E. Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. Ann Sci. 2011;68:69–80.
doi: 10.1007/s13595-010-0008-4
Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and functional convergence across the North American soil mycobiome. PNAS 2014;111:6341–6.
pubmed: 24733885
pmcid: 4035912
doi: 10.1073/pnas.1402584111
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Bio Biochem. 2016;97:188–98.
doi: 10.1016/j.soilbio.2016.03.017
Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.
pubmed: 30143799
doi: 10.1038/s41564-018-0201-z
Etzold S, Ferretti M, Reinds GJ, Solberg S, Gessler A, Waldner P, et al. Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Ecol Man. 2020;458:117762.
doi: 10.1016/j.foreco.2019.117762
Van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 2018;558:243–8.
pubmed: 29875410
doi: 10.1038/s41586-018-0189-9
Ferretti M, Fischer R Forest Monitoring: Methods for Terrestrial Investigations in Europe with an Overview of North America and Asia in Developments in Environmental Science. vol. 12. Elsevier, Amsterdam, 2013. pp 2-507.
Dobbertin M, Neumann M Part V: Tree Growth. In: UNECE ICP Forests, Programme Co- ordinating Centre (ed.): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. Eberswalde. 2016. https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part05.pdf .
Averill C, Cates LL, Dietze MC, Bhatnagar JM. Spatial vs. temporal controls over soil fungal community similarity at continental and global scales. ISME J. 2019;13:2082–93.
pubmed: 31019271
pmcid: 6776031
doi: 10.1038/s41396-019-0420-1
Pellitier PT, Ibáñez I, Zak DR, Argiroff WA, Acharya K. Ectomycorrhizal access to organic nitrogen mediates CO
pubmed: 34518539
pmcid: 8438073
doi: 10.1038/s41467-021-25652-x
Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, et al. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iFor - Biogeo. 2013;6:326–30.
Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, et al. Good practice guidance for land use, land-use change and forestry. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES) for the IPCC. 2003. https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf .
Waldner P. Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atm Env. 2014;95:363–74.
doi: 10.1016/j.atmosenv.2014.06.054
Nieminen T, De Vos B, Cools N, König N, Fischer R, Lost S, et al. Part XI: Soil Solution Collection and Analysis. In: UNECE ICP Forests Programme Co-ordinating Centre (eds): Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. Eberswalde. 2016. https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part11.pdf .
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Inter J Clim. 2017;37:4302–15.
doi: 10.1002/joc.5086
Cox F, Barsoum N, Lilleskov EA, Bidartondo MI. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett. 2010;13:1103–13.
pubmed: 20545731
doi: 10.1111/j.1461-0248.2010.01494.x
Okonechnikov K, Golosova O, Fursov M. Unipro GENE: a unified bioinformatics toolkit. Bioinf. 2012;28:1166–7.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinf. 2010;26:2460–1.
Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. N. Phytol. 2010;186:281–5.
doi: 10.1111/j.1469-8137.2009.03160.x
Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704.
pubmed: 24297253
doi: 10.1093/nar/gkt1183
Douglas GM, Beiko RG, Langille MG Predicting the Functional Potential of the Microbiome from Marker Genes Using PICRUSt (eds). Microbiome Analysis. Methods in Molecular Biology. Vol 1849. Humana Press, New York, 2018. pp 169–77.
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat biot. 2013;31:814–21.
doi: 10.1038/nbt.2676
Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.
pubmed: 25971588
pmcid: 4429240
doi: 10.1128/MMBR.00001-15
Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:3568.
pubmed: 31395870
pmcid: 6687798
doi: 10.1038/s41467-019-11488-z
Revell LJ, Revell MLJ Package ‘phytools’. 2020. https://github.com/liamrevell/phytools .
Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017;551:457–63.
pubmed: 29088705
pmcid: 6192678
doi: 10.1038/nature24621
Gibbons SM, Lekberg Y, Mummey DL, Sangwan N, Ramsey PW, Gilbert JA. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2017;2:e00178–16.
pubmed: 28289729
pmcid: 5340861
doi: 10.1128/mSystems.00178-16
Pold G, Domeignoz-Horta LA, Morrison EW, Frey SD, Sistla SA, DeAngelis KM. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. MBio 2020;11:e02293–19.
pubmed: 31964725
pmcid: 6974560
doi: 10.1128/mBio.02293-19
Stewart JD, Shakya KM, Bilinski T, Wilson JW, Ravi S, Choi CS. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci Tot Env. 2020;724:138353.
doi: 10.1016/j.scitotenv.2020.138353
Sun S, Jones RB, Fodor AA. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 2020;8:46.
pubmed: 32241293
pmcid: 7118876
doi: 10.1186/s40168-020-00815-y
Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 2012;109:21390–5.
pubmed: 23236140
pmcid: 3535587
doi: 10.1073/pnas.1215210110
Moore JAM, Anthony MA, Pec GJ, Trocha LK, Trzebny A, Geyer KM, et al. Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob Chan Bio. 2021;27:1349–64.
doi: 10.1111/gcb.15444
Team RC R: A language and environment for statistical computing. 2013.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. 2013. https://github.com/vegandevs/vegan .
Morris MH, Pérez-Pérez MA, Smith ME, Bledsoe CS. Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza 2008;18:375–83.
pubmed: 18704515
doi: 10.1007/s00572-008-0186-1
Lindner DL, Banik MT. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots. Mycologia 2009;101:157–65.
pubmed: 19271678
doi: 10.3852/08-034
Orlovich DA, Draffin SJ, Daly RA, Stephenson SL. Piracy in the high trees: ectomycorrhizal fungi from an aerial ‘canopy soil’ microhabitat. Mycologia 2013;105:52–60.
pubmed: 22778170
doi: 10.3852/11-307
Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, et al. 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. N Phytol. 2010;188:291–301.
doi: 10.1111/j.1469-8137.2010.03373.x
Morrison EW, Frey SD, Sadowsky JJ, van Diepen LT, Thomas WK, Pringle A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 2016;23:48–57.
doi: 10.1016/j.funeco.2016.05.011
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinf. 2019;35:526–8.
Madhulatha TS An overview on clustering methods. arXiv preprint. 2012;arXiv:1205.1117
Pallmann P, Hothorn LA. Analysis of means: a generalized approach using R. J Ap Stat 2016;43:1541–60.
doi: 10.1080/02664763.2015.1117584
De Caceres M, Jansen F, De Caceres MM Package ‘indicspecies’. 2016. https://vegmod.github.io/software/indicspecies .
Wood S, Wood MS Package ‘mgcv’. 2015. https://cran.r-project.org/web/packages/mgcv/mgcv.pdf .
Larsen WA, McCleary SJ. The use of partial residual plots in regression analysis. Technometrics 1972;14:781–90.
doi: 10.1080/00401706.1972.10488966
Gower ST, McMurtrie RE, Murty D. Aboveground net primary production decline with stand age: potential causes. Tr Eco Evol. 1996;11:378–82.
doi: 10.1016/0169-5347(96)10042-2
O’brien RM. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 2007;41:673–90.
doi: 10.1007/s11135-006-9018-6
Koide RT, Fernandez CW. The continuing relevance of “older” mycorrhiza literature: insights from the work of John Laker Harley (1911–1990). Mycorrhiza 2018;28:577–86.
pubmed: 30014212
doi: 10.1007/s00572-018-0854-8
Anthony MA, Stinson KA, Moore JAM, Frey SD. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 2020;194:659–72.
pubmed: 33141324
pmcid: 7683454
doi: 10.1007/s00442-020-04797-4
Jonsson LM, Nilsson M-C, Wardle DA, Zackrisson O. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 2001;93:353–64.
doi: 10.1034/j.1600-0706.2001.930301.x
Hazard C, Kruitbos L, Davidson H, Taylor AFS, Johnson D. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. N. Phytol. 2017;213:852–63.
doi: 10.1111/nph.14184
Gehring CA, Sthultz CM, Flores-Rentería L, Whipple AV, Whitham TG. Tree genetics defines fungal partner communities that may confer drought tolerance. PNAS 2017;114:11169–74.
pubmed: 28973879
pmcid: 5651740
doi: 10.1073/pnas.1704022114
Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354.
Baxter JW, Dighton J. Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. N. Phytol. 2001;152:139–49.
doi: 10.1046/j.0028-646x.2001.00245.x
Dighton J, White JF. The fungal community: its organization and role in the ecosystem. 3rd ed. CRC Press, Boca Raton, 2005.
Diagne N, Thioulouse J, Sanguin H, Prin Y, Krasova-Wade T, Sylla S, et al. Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Bio Biochem. 2013;57:468–76.
doi: 10.1016/j.soilbio.2012.08.030
Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC. Ectomycorrhizal fungal diversity increases phosphorus uptake efficiency of European beech. N. Phytol. 2018;220:1200–10.
doi: 10.1111/nph.15208
Nygren CMR, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AFS. Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. N. Phytol. 2008;180:875–89.
doi: 10.1111/j.1469-8137.2008.02618.x
Wallenda T, Stober C, Högbom L, Schinkel H, George E, Högberg P, et al. Nitrogen Uptake Processes in Roots and Mycorrhizas (eds). Carbon and Nitrogen Cycling in European Forest Ecosystems. Springer, Berlin, 2000. pp 122–43.
Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, et al. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeoch. 2018;139:103–22.
doi: 10.1007/s10533-018-0459-5
Marzluf GA. Regulation of nitrogen metabolism and gene expression in fungi. Microbi Rev. 1981;45:437–61.
doi: 10.1128/mr.45.3.437-461.1981
Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Bio Biochem. 1994;26:1305–11.
doi: 10.1016/0038-0717(94)90211-9
Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. N. Phytol. 2014;203:245–56.
doi: 10.1111/nph.12791
Lilleskov E, Hobbie EA, Horton T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 2011;4:174–83.
doi: 10.1016/j.funeco.2010.09.008
Franklin O, Näsholm T, Högberg P, Högberg MN. Forests trapped in nitrogen limitation - an ecological market perspective on ectomycorrhizal symbiosis. N. Phytol. 2014;203:657–66.
doi: 10.1111/nph.12840
Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, et al. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J. 2015;9:1693–9.
pubmed: 25535936
doi: 10.1038/ismej.2014.252
Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Div. 2020;105:1–16.
doi: 10.1007/s13225-020-00466-2
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366:1–27.
doi: 10.1007/s11104-013-1630-3
Agerer R. Exploration types of ectomycorrhizae. Mycorrhiza 2001;11:107–14.
doi: 10.1007/s005720100108
Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. Ectomycorrhizas and tipping points in forest ecosystems. N. Phytol 2021;231:1700–7.
doi: 10.1111/nph.17547
Wasyliw J, Karst J. Shifts in ectomycorrhizal exploration types parallel leaf and fine root area with forest age. J Ecol. 2020;108:2270–82.
doi: 10.1111/1365-2745.13484
LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE. Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 2013;172:257–69.
pubmed: 23053232
doi: 10.1007/s00442-012-2471-0
Struck C. Amino acid uptake in rust fungi. Front Plant Sci. 2015;6:40.
pubmed: 25699068
pmcid: 4318339
doi: 10.3389/fpls.2015.00040
Wen Z, Shi L, Tang Y, Shen Z, Xia Y, Chen Y. Effects of Pisolithus tinctorius and Cenococcum geophilum inoculation on pine in copper-contaminated soil to enhance phytoremediation. Int J Phytorem. 2017;19:387–94.
doi: 10.1080/15226514.2016.1244155
Garbaye J, Churin J-L. Effect of ectomycorrhizal inoculation at planting on growth and foliage quality of Tilia tomentosa. J Arbor 1996;22:29–34.
Fernandez CW, Koide RT. The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecol. 2013;6:479–86.
doi: 10.1016/j.funeco.2013.08.004
Heinonsalo J, Sun H, Santalahti M, Bäcklund K, Hari P, Pumpanen J. Evidences on the ability of mycorrhizal genus Piloderma to use organic nitrogen and deliver it to Scots Pine. PLoS ONE. 2015;10:e0131561.
pubmed: 26132469
pmcid: 4489387
doi: 10.1371/journal.pone.0131561
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014; 346.
Polley H, Kroiher F, Riedel T Beech and spruce popular and in-demand. Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei. 2015. https://literatur.thuenen.de/digbib_extern/dn055748.pdf .
Brzostek ER, Fisher JB, Phillips RP. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J Geophy Res. 2014;119:1684–97.
doi: 10.1002/2014JG002660
Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. PNAS 2005;102:11070–5.
pubmed: 16033867
pmcid: 1176910
doi: 10.1073/pnas.0504978102
NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 2019;7:31.
doi: 10.1186/s40168-019-0620-y