The cnidarian parasite

Cnidaria Myxospore Myxozoa Nematocyst Proteome Toxin Transcriptome Venom

Journal

PeerJ
ISSN: 2167-8359
Titre abrégé: PeerJ
Pays: United States
ID NLM: 101603425

Informations de publication

Date de publication:
2021
Historique:
received: 02 07 2021
accepted: 16 11 2021
entrez: 10 1 2022
pubmed: 11 1 2022
medline: 11 1 2022
Statut: epublish

Résumé

Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish's gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in

Sections du résumé

BACKGROUND BACKGROUND
Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known.
METHODS METHODS
We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of
RESULTS RESULTS
We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish's gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in

Identifiants

pubmed: 35003924
doi: 10.7717/peerj.12606
pii: 12606
pmc: PMC8684318
doi:

Types de publication

Journal Article

Langues

eng

Pagination

e12606

Informations de copyright

© 2021 Americus et al.

Déclaration de conflit d'intérêts

The authors declare that they have no competing interests.

Références

BMC Genomics. 2015 Oct 23;16:840
pubmed: 26494377
BMC Bioinformatics. 2015 May 22;16:169
pubmed: 25994840
Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6
pubmed: 25414356
Blood. 2003 Apr 1;101(7):2628-36
pubmed: 12517809
Sci Rep. 2017 Aug 21;7(1):9010
pubmed: 28827642
Int J Dev Biol. 2012;56(6-8):577-82
pubmed: 22689365
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
Parasit Vectors. 2015 Aug 04;8:408
pubmed: 26238343
PLoS One. 2021 Feb 23;16(2):e0234837
pubmed: 33621237
Parasit Vectors. 2016 Oct 14;9(1):549
pubmed: 27741948
Parasitology. 2007 Nov;134(Pt 12):1741-50
pubmed: 17662162
Circulation. 2007 Oct 16;116(16):1768-75
pubmed: 17909105
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Mar Drugs. 2019 Jul 25;17(8):
pubmed: 31349621
Biochemistry. 2003 Aug 5;42(30):8939-44
pubmed: 12885226
Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14912-7
pubmed: 26627241
Sci Rep. 2019 Oct 21;9(1):15073
pubmed: 31636316
Genome Res. 2008 Jun;18(6):986-94
pubmed: 18463304
Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5
pubmed: 27131377
Annu Rev Genomics Hum Genet. 2009;10:483-511
pubmed: 19640225
PLoS One. 2012;7(12):e47866
pubmed: 23236347
Microorganisms. 2020 Sep 29;8(10):
pubmed: 33003479
Nat Protoc. 2015 Jun;10(6):845-58
pubmed: 25950237
J Biochem Mol Toxicol. 2014 Feb;28(2):76-83
pubmed: 24243656
Semin Cell Dev Biol. 2017 Dec;72:133-141
pubmed: 28751252
PeerJ. 2021 Apr 26;9:e11208
pubmed: 33981497
Toxicon. 2009 Dec 15;54(8):1054-64
pubmed: 19268491
Microorganisms. 2019 Sep 26;7(10):
pubmed: 31561529
Genome Biol. 2014;15(12):550
pubmed: 25516281
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27481-27492
pubmed: 33060291
J Mol Cell Cardiol. 2016 Oct;99:57-64
pubmed: 27539859
Toxins (Basel). 2015 Jun 18;7(6):2251-71
pubmed: 26094698
Mol Biol Evol. 2015 Mar;32(3):740-53
pubmed: 25518955
Sci Rep. 2017 Dec 14;7(1):17583
pubmed: 29242500
Toxins (Basel). 2019 Feb 12;11(2):
pubmed: 30759797
BMC Genomics. 2013 Jun 12;14:394
pubmed: 23758969
Comp Biochem Physiol B. 1983;76(2):377-83
pubmed: 6357622
Mol Biol Evol. 2010 Dec;27(12):2733-46
pubmed: 20576761
Genome Biol Evol. 2020 Aug 1;12(8):1258-1276
pubmed: 32467979
Int J Parasitol. 2020 Sep;50(10-11):763-769
pubmed: 32707121
Toxicon. 2005 Jun 15;45(8):1099-114
pubmed: 15922777
J Proteomics. 2018 Feb 20;173:12-21
pubmed: 29191747
Mar Biotechnol (NY). 2013 Jun;15(3):329-39
pubmed: 23151943
Proc Biol Sci. 2012 Apr 7;279(1732):1351-8
pubmed: 22048953
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
Curr Biol. 1999 Jul 29-Aug 12;9(15):825-8
pubmed: 10469567
Toxins (Basel). 2016 Jul 23;8(8):
pubmed: 27455326
Methods Enzymol. 1995;248:345-68
pubmed: 7674931
BMC Genomics. 2016 Aug 17;17:650
pubmed: 27535656
Mar Drugs. 2018 Jan 24;16(2):
pubmed: 29364843
Toxicon. 2011 Sep 1;58(3):277-84
pubmed: 21718715
PLoS One. 2021 Mar 29;16(3):e0249266
pubmed: 33780500
J Proteome Res. 2012 Feb 3;11(2):1152-62
pubmed: 22168127
Mar Drugs. 2020 Aug 05;18(8):
pubmed: 32764303
Int J Parasitol. 2010 Aug 1;40(9):1087-95
pubmed: 20385137
BMC Biol. 2019 Mar 29;17(1):28
pubmed: 30925871
Genome Biol Evol. 2016 Aug 25;8(8):2358-75
pubmed: 27389690
BMC Genomics. 2015 May 27;16:407
pubmed: 26014501
BMC Bioinformatics. 2004 Aug 19;5:113
pubmed: 15318951
Cancer Med. 2020 Oct;9(19):6972-6983
pubmed: 32779397
Toxicon. 2018 Sep 1;151:47-62
pubmed: 29964058
Sci Rep. 2020 Nov 26;10(1):20657
pubmed: 33244035
FEBS J. 2013 Oct;280(19):4839-52
pubmed: 23895459
J Proteome Res. 2012 Oct 5;11(10):5046-58
pubmed: 22928724
Mar Drugs. 2020 Oct 06;18(10):
pubmed: 33036158
Genome Biol Evol. 2014 Nov 08;6(12):3182-98
pubmed: 25381665
Sci Rep. 2016 Dec 20;6:39553
pubmed: 27996045
BMC Bioinformatics. 2006 Apr 05;7:191
pubmed: 16597342
Nat Protoc. 2013 Aug;8(8):1494-512
pubmed: 23845962
Nature. 1995 Jun 8;375(6531):456
pubmed: 7777053
PLoS One. 2015 Jul 06;10(7):e0132030
pubmed: 26148004
Nat Methods. 2017 Apr;14(4):417-419
pubmed: 28263959
Toxicon. 2017 Oct;137:19-26
pubmed: 28711466
BMC Genomics. 2015 Mar 21;16:221
pubmed: 25886045

Auteurs

Benjamin Americus (B)

Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.

Nicole Hams (N)

Columbia River Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Vancouver, Washington, United States of America.

Anna M L Klompen (AML)

Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, United States of America.

Gema Alama-Bermejo (G)

Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.
Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

Tamar Lotan (T)

Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.

Jerri L Bartholomew (JL)

Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.

Stephen D Atkinson (SD)

Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America.

Classifications MeSH