Recent Developments in Data-Assisted Modeling of Flexible Proteins.

chemical cross-linking coupled with mass spectroscopy coarse graining conformational ensembles data-assisted modeling molecular dynamics nuclear magnetic resonance proteins small-angle X-ray scattering

Journal

Frontiers in molecular biosciences
ISSN: 2296-889X
Titre abrégé: Front Mol Biosci
Pays: Switzerland
ID NLM: 101653173

Informations de publication

Date de publication:
2021
Historique:
received: 27 08 2021
accepted: 06 12 2021
entrez: 10 1 2022
pubmed: 11 1 2022
medline: 11 1 2022
Statut: epublish

Résumé

Many proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this article, we review the recent developments in the concept and methods for the determination of the dynamic structures of flexible peptides and proteins. In particular, we describe ways to extract information from nuclear magnetic resonance small-angle X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS) measurements. All these techniques can be used to obtain ensemble-averaged restraints or to re-weight the simulated conformational ensembles.

Identifiants

pubmed: 35004845
doi: 10.3389/fmolb.2021.765562
pii: 765562
pmc: PMC8740120
doi:

Types de publication

Journal Article Review

Langues

eng

Pagination

765562

Informations de copyright

Copyright © 2021 Czaplewski, Gong, Lubecka, Xue, Tang and Liwo.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

J Chem Phys. 2013 Feb 28;138(8):084107
pubmed: 23464140
J Biomol Struct Dyn. 1987 Jun;4(6):1119-35
pubmed: 3270538
J Phys Chem B. 2012 Jul 26;116(29):8494-503
pubmed: 22545654
Protein Sci. 2014 Jun;23(6):747-59
pubmed: 24639379
J Chem Theory Comput. 2019 Sep 10;15(9):5103-5115
pubmed: 31402649
J Am Chem Soc. 2013 Nov 6;135(44):16595-609
pubmed: 24093873
Elife. 2015 Jun 19;4:
pubmed: 26090905
J Biomol NMR. 2015 Aug;62(4):453-71
pubmed: 25801209
Nat Chem Biol. 2009 Nov;5(11):789-96
pubmed: 19841628
Biophys J. 2017 Sep 5;113(5):1002-1011
pubmed: 28877484
Proteins. 2012 Feb;80(2):556-72
pubmed: 22095648
Biophys J. 2008 Mar 1;94(5):1589-99
pubmed: 17993489
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8471-6
pubmed: 19439666
Curr Opin Struct Biol. 2007 Feb;17(1):3-14
pubmed: 17250999
Biochemistry. 2018 Jan 23;57(3):305-313
pubmed: 28945353
Nature. 2007 Dec 13;450(7172):964-72
pubmed: 18075575
Proteins. 2018 Mar;86 Suppl 1:228-239
pubmed: 29134679
Chem Rev. 2016 Jul 27;116(14):7898-936
pubmed: 27333362
Science. 2021 Aug 20;373(6557):871-876
pubmed: 34282049
J Struct Biol. 2011 Mar;173(3):461-71
pubmed: 20920583
Science. 1983 May 13;220(4598):671-80
pubmed: 17813860
Biophys J. 2021 Nov 16;120(22):5124-5135
pubmed: 34627764
J Biomol NMR. 2014 Mar;58(3):149-54
pubmed: 24510274
Biochim Biophys Acta. 2016 Jan;1864(1):115-22
pubmed: 25896389
Curr Opin Struct Biol. 2019 Jun;56:37-45
pubmed: 30502729
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9455-60
pubmed: 24938783
J Chem Phys. 2015 Dec 28;143(24):243150
pubmed: 26723635
Elife. 2021 Mar 29;10:
pubmed: 33779550
Structure. 2020 Oct 6;28(10):1160-1167.e3
pubmed: 32763142
Annu Rev Biophys. 2019 May 6;48:297-319
pubmed: 30901260
Curr Opin Chem Biol. 2021 Feb;60:39-46
pubmed: 32829152
J Am Chem Soc. 2007 May 2;129(17):5656-64
pubmed: 17411046
Chem Soc Rev. 2014 Jul 7;43(13):4871-93
pubmed: 24759934
Structure. 2011 Jan 12;19(1):109-16
pubmed: 21220121
J Comput Chem. 2011 Feb;32(3):536-44
pubmed: 20806263
Curr Opin Struct Biol. 2017 Feb;42:106-116
pubmed: 28063280
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
J Biomol NMR. 2015 Aug;62(4):439-51
pubmed: 26081575
Structure. 2013 Jun 4;21(6):875-81
pubmed: 23747111
J Comput Chem. 2009 Jul 30;30(10):1545-614
pubmed: 19444816
Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1002-1006
pubmed: 27990729
IUCrJ. 2015 Feb 26;2(Pt 2):207-17
pubmed: 25866658
Gen Physiol Biophys. 2009 Jun;28(2):174-89
pubmed: 19592714
Bioinformatics. 2013 Feb 1;29(3):398-9
pubmed: 23233655
J Biomol NMR. 2019 Jul;73(6-7):305-317
pubmed: 31297688
J Mol Biol. 2020 Apr 17;432(9):2913-2929
pubmed: 32044345
Prog Mol Biol Transl Sci. 2020;170:123-176
pubmed: 32145944
J Mol Biol. 2008 Oct 17;382(4):1089-106
pubmed: 18694757
Phys Chem Chem Phys. 2016 Feb 17;18(8):5832-8
pubmed: 26548662
J Am Chem Soc. 2009 Dec 16;131(49):17908-18
pubmed: 19908838
Protein Sci. 2018 Jan;27(1):26-40
pubmed: 28766807
Mol Cell. 2012 Dec 28;48(6):863-74
pubmed: 23123194
Proc Natl Acad Sci U S A. 2004 May 4;101(18):6841-6
pubmed: 15100408
J Chem Theory Comput. 2016 Jan 12;12(1):383-94
pubmed: 26632648
J Am Chem Soc. 2009 Dec 2;131(47):17215-25
pubmed: 19891472
J Phys Chem Lett. 2016 Jul 7;7(13):2483-9
pubmed: 27300592
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2):
pubmed: 33376207
J Comput Chem. 2021 Nov 5;42(29):2054-2067
pubmed: 34402552
Annu Rev Biophys. 2010;39:387-405
pubmed: 20462377
Proteins. 2019 Dec;87(12):1283-1297
pubmed: 31569265
Biophys Rep. 2015;1:127-138
pubmed: 27340691
J Chem Theory Comput. 2021 Aug 10;17(8):5262-5275
pubmed: 34291646
J Chem Theory Comput. 2015 Jun 9;11(6):2451-60
pubmed: 26575545
J Chem Theory Comput. 2013 Dec 10;9(12):5610-7
pubmed: 26592295
J Chem Theory Comput. 2012 Oct 9;8(10):3445-51
pubmed: 26592995
Biophys Rep. 2017;3(4):100-108
pubmed: 29238747
J Biomol NMR. 1999 Dec;15(4):315-30
pubmed: 10685340
Biophys J. 2003 Feb;84(2 Pt 1):775-86
pubmed: 12547762
Acta Biochim Pol. 2004;51(2):349-71
pubmed: 15218533
J Am Chem Soc. 2015 Dec 9;137(48):15122-34
pubmed: 26424125
J Chem Phys. 2019 Apr 21;150(15):155104
pubmed: 31005069
J Mol Biol. 2020 Apr 17;432(9):2949-2972
pubmed: 32135192
Science. 2018 Jul 27;361(6400):355-360
pubmed: 30049874
Proteins. 2015 Dec;83(12):2251-62
pubmed: 26454251
Chem Rev. 2014 Jul 9;114(13):6589-631
pubmed: 24773235
J Am Chem Soc. 2010 Jun 23;132(24):8407-18
pubmed: 20499903
Nature. 2005 Jan 13;433(7022):128-32
pubmed: 15650731
J Chem Phys. 2013 Mar 7;138(9):094112
pubmed: 23485282
J Comput Chem. 2021 Aug 15;42(22):1579-1589
pubmed: 34048074
J Magn Reson. 2014 Apr;241:74-85
pubmed: 24656082
Angew Chem Int Ed Engl. 2016 Dec 23;55(52):15990-16010
pubmed: 27862777
J Biol Chem. 2017 Jan 27;292(4):1187-1196
pubmed: 27994050
Chem Soc Rev. 2013 Aug 21;42(16):6801-22
pubmed: 23708257
J Biomol NMR. 1994 Jan;4(1):143-9
pubmed: 22911161
Biophys J. 2016 Jan 5;110(1):113-26
pubmed: 26745415
Methods Enzymol. 2015;564:485-97
pubmed: 26477262

Auteurs

Cezary Czaplewski (C)

Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.

Zhou Gong (Z)

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.

Emilia A Lubecka (EA)

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland.

Kai Xue (K)

PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

Chun Tang (C)

PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.

Adam Liwo (A)

Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.

Classifications MeSH