Reduced infant rhesus macaque growth rates due to environmental enteric dysfunction and association with histopathology in the large intestine.
Animals
Duodenum
/ pathology
Female
Gastrointestinal Tract
Gene Expression
Growth Disorders
/ pathology
Humans
Ileum
/ pathology
Inflammation
Intestinal Diseases
Intestinal Mucosa
Intestine, Large
/ pathology
Intestine, Small
/ pathology
Jejunum
/ pathology
Macaca mulatta
/ growth & development
Male
Malnutrition
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 01 2022
11 01 2022
Historique:
received:
22
04
2021
accepted:
15
12
2021
entrez:
12
1
2022
pubmed:
13
1
2022
medline:
11
2
2022
Statut:
epublish
Résumé
Environmental enteric dysfunction is associated with malnutrition as well as infant growth stunting and has been classically defined by villous blunting, decreased crypt-to-villus ratio, and inflammation in the small intestine. Here, we characterized environmental enteric dysfunction among infant rhesus macaques that are naturally exposed to enteric pathogens commonly linked to human growth stunting. Remarkably, despite villous atrophy and histological abnormalities observed in the small intestine, poor growth trajectories and low serum tryptophan levels were correlated with increased histopathology in the large intestine. This work provides insight into the mechanisms underlying this disease and indicates that the large intestine may be an important target for therapeutic intervention.
Identifiants
pubmed: 35017515
doi: 10.1038/s41467-021-27925-x
pii: 10.1038/s41467-021-27925-x
pmc: PMC8752659
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
234Subventions
Organisme : NIH HHS
ID : P51 OD011092
Pays : United States
Organisme : NIGMS NIH HHS
ID : R25 GM055246
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
Harper, K. M., Mutasa, M., Prendergast, A. J., Humphrey, J. & Manges, A. R. Environmental enteric dysfunction pathways and child stunting: a systematic review. PLoS Negl. Trop. Dis. 12, e0006205 (2018).
pubmed: 29351288
pmcid: 5792022
doi: 10.1371/journal.pntd.0006205
Grantham-McGregor, S. et al. Developmental potential in the first 5 years for children in developing countries. Lancet 369, 60–70 (2007).
pubmed: 17208643
pmcid: 2270351
doi: 10.1016/S0140-6736(07)60032-4
Kosek, M. N. et al. Plasma tryptophan and the kynurenine-tryptophan ratio are associated with the acquisition of statural growth deficits and oral vaccine underperformance in populations with environmental enteropathy. Am. J. Trop. Med. Hyg. 95, 928–937 (2016).
pubmed: 27503512
pmcid: 5062803
doi: 10.4269/ajtmh.16-0037
Checkley, W. et al. Multi-country analysis of the effects of diarrhoea on childhood stunting. Int. J. Epidemiol. 37, 816–830 (2008).
pubmed: 18567626
pmcid: 2734063
doi: 10.1093/ije/dyn099
Alvarado, B. E., Zunzunegui, M. V., Delisle, H. & Osorno, J. Growth trajectories are influenced by breast-feeding and infant health in an afro-colombian community. J. Nutr. 135, 2171–2178 (2005).
pubmed: 16140894
doi: 10.1093/jn/135.9.2171
Keusch, G. T. et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr. Bull. 34, 357–364 (2013).
pubmed: 24167916
pmcid: 4643688
doi: 10.1177/156482651303400308
Platts-Mills, J. A. et al. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study. Clin. Infect. Dis. 59(Suppl 4), S233–S238 (2014).
pubmed: 25305292
pmcid: 4204610
doi: 10.1093/cid/ciu408
Lee, G. et al. Symptomatic and asymptomatic campylobacter infections associated with reduced growth in Peruvian children. PLoS Negl. Trop. Dis. 7, e2036 (2013).
pubmed: 23383356
pmcid: 3561130
doi: 10.1371/journal.pntd.0002036
Amour, C. et al. Epidemiology and impact of campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin. Infect. Dis. 63, 1171–1179 (2016).
pubmed: 27501842
pmcid: 5064165
Sanchez, J. J. et al. Campylobacter infection and household factors are associated with childhood growth in urban Bangladesh: an analysis of the MAL-ED study. PLoS Negl. Trop. Dis. 14, e0008328 (2020).
pubmed: 32407313
pmcid: 7252635
doi: 10.1371/journal.pntd.0008328
Lunn, P. G. The impact of infection and nutrition on gut function and growth in childhood. Proc. Nutr. Soc. 59, 147–154 (2000).
pubmed: 10828184
doi: 10.1017/S0029665100000173
Tickell, K. D., Atlas, H. E. & Walson, J. L. Environmental enteric dysfunction: a review of potential mechanisms, consequences and management strategies. BMC Med. 17, 181 (2019).
pubmed: 31760941
pmcid: 6876067
doi: 10.1186/s12916-019-1417-3
Crane, R. J., Jones, K. D. & Berkley, J. A. Environmental enteric dysfunction: an overview. Food Nutr. Bull. 36, S76–S87 (2015).
pubmed: 25902619
pmcid: 4472379
doi: 10.1177/15648265150361S113
Korpe, P. S. & Petri, W. A. Jr. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol. Med. 18, 328–336 (2012).
pubmed: 22633998
pmcid: 3372657
doi: 10.1016/j.molmed.2012.04.007
Keusch, G. T. et al. Environmental enteric dysfunction: pathogenesis, diagnosis, and clinical consequences. Clin. Infect. Dis. 59, S207–S212 (2014).
pubmed: 25305288
pmcid: 4481570
doi: 10.1093/cid/ciu485
Prongay, K., Park, B. & Murphy, S. J. Risk factor analysis may provide clues to diarrhea prevention in outdoor-housed rhesus macaques (Macaca mulatta). Am. J. Primatol. 75, 872–882 (2013).
pubmed: 23568382
pmcid: 3956043
doi: 10.1002/ajp.22150
Haertel, A. J., Prongay, K., Gao, L., Gottlieb, D. H. & Park, B. Standard growth and diarrhea-associated growth faltering in captive infant rhesus macaques (Macaca mulatta). Am. J. Primatol. 80, e22923 (2018).
pubmed: 30281825
pmcid: 6405262
doi: 10.1002/ajp.22923
Laing, S. T. et al. Idiopathic colitis in rhesus macaques is associated with dysbiosis, abundant enterochromaffin cells and altered T-cell cytokine expression. Vet. Pathol. 55, 741–752 (2018).
pubmed: 29929446
doi: 10.1177/0300985818780449
Quintel, B. K. et al. Vaccine-mediated protection against Campylobacter-associated enteric disease. Sci. Adv. 6, eaba4511 (2020).
pubmed: 32637610
pmcid: 7314533
doi: 10.1126/sciadv.aba4511
Ngure, F. M. et al. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. Ann. N. Y. Acad. Sci. 1308, 118–128 (2014).
pubmed: 24571214
doi: 10.1111/nyas.12330
Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).
pubmed: 25732063
pmcid: 4369771
doi: 10.1016/j.chom.2015.01.015
Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl Acad. Sci. USA 113, 10376–10381 (2016).
pubmed: 27573830
pmcid: 5027417
doi: 10.1073/pnas.1521835113
Rhoades, N. et al. Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biol. 20, 173 (2019).
pubmed: 31451108
pmcid: 6709555
doi: 10.1186/s13059-019-1789-x
Claas, E. C., Burnham, C. A., Mazzulli, T., Templeton, K. & Topin, F. Performance of the xTAG(R) gastrointestinal pathogen panel, a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. J. Microbiol. Biotechnol. 23, 1041–1045 (2013).
pubmed: 23711521
doi: 10.4014/jmb.1212.12042
Coste, J. F. et al. Microbiological diagnosis of severe diarrhea in kidney transplant recipients by use of multiplex PCR assays. J. Clin. Microbiol. 51, 1841–1849 (2013).
pubmed: 23554205
pmcid: 3716061
doi: 10.1128/JCM.03366-12
Mengelle, C. et al. Simultaneous detection of gastrointestinal pathogens with a multiplex Luminex-based molecular assay in stool samples from diarrhoeic patients. Clin. Microbiol. Infect. 19, E458–E465 (2013).
pubmed: 23714194
doi: 10.1111/1469-0691.12255
Sestak, K. et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect. Immun. 71, 4079–4086 (2003).
pubmed: 12819098
pmcid: 162015
doi: 10.1128/IAI.71.7.4079-4086.2003
Mal-Ed Network Investigators. Relationship between growth and illness, enteropathogens and dietary intakes in the first 2 years of life: findings from the MAL-ED birth cohort study. BMJ Glob. Health 2, e000370 (2017).
doi: 10.1136/bmjgh-2017-000370
Rogawski, E. T. et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 6, e1319–e1328 (2018).
pubmed: 30287125
pmcid: 6227248
doi: 10.1016/S2214-109X(18)30351-6
Haque, M. A. et al. Determinants of Campylobacter infection and association with growth and enteric inflammation in children under 2 years of age in low-resource settings. Sci. Rep. 9, 17124 (2019).
pubmed: 31748573
pmcid: 6868199
doi: 10.1038/s41598-019-53533-3
Moore, S. R. et al. Prolonged episodes of acute diarrhea reduce growth and increase risk of persistent diarrhea in children. Gastroenterology 139, 1156–1164 (2010).
pubmed: 20638937
doi: 10.1053/j.gastro.2010.05.076
Mondal, D., Petri, W. A. Jr., Sack, R. B., Kirkpatrick, B. D. & Haque, R. Entamoeba histolytica-associated diarrheal illness is negatively associated with the growth of preschool children: evidence from a prospective study. Trans. R Soc. Trop. Med. Hyg. 100, 1032–1038 (2006).
pubmed: 16730764
doi: 10.1016/j.trstmh.2005.12.012
Gutierrez-Jimenez, J. et al. Children from a rural region in the Chiapas Highlands, Mexico, show an increased risk of stunting and intestinal parasitoses when compared with urban children. Bol. Med. Hosp. Infant Mex. 76, 18–26 (2019).
pubmed: 30657470
Aiemjoy, K. et al. Epidemiology of soil-transmitted helminth and intestinal protozoan infections in preschool-aged children in the Amhara Region of Ethiopia. Am. J. Trop. Med. Hyg. 96, 866–872 (2017).
pubmed: 28167597
pmcid: 5392634
Liu, T. C. et al. A novel histological index for evaluation of environmental enteric dysfunction identifies geographic-specific features of enteropathy among children with suboptimal growth. PLoS Negl Trop Dis 14, e0007975 (2020).
pubmed: 31929525
pmcid: 6980693
doi: 10.1371/journal.pntd.0007975
Bethune, M. T. et al. A non-human primate model for gluten sensitivity. PLoS ONE 3, e1614 (2008).
pubmed: 18286171
pmcid: 2229647
doi: 10.1371/journal.pone.0001614
Chacko, C. J., Paulson, K. A., Mathan, V. I. & Baker, S. J. The villus architecture of the small intestine in the tropics: a necropsy study. J. Pathol. 98, 146–151 (1969).
pubmed: 5352370
doi: 10.1002/path.1710980209
Ali, A., Iqbal, N. T. & Sadiq, K. Environmental enteropathy. Curr. Opin. Gastroenterol. 32, 12–17 (2016).
pubmed: 26574871
doi: 10.1097/MOG.0000000000000226
Rhoades, N. S. et al. Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen. Mucosal Immunol. https://doi.org/10.1038/s41385-41021-00418-41382 (2021).
Gazi, M. A. et al. Plasma kynurenine to tryptophan ratio is negatively associated with linear growth of children living in a slum of Bangladesh: results from a community-based intervention study. Am. J. Trop. Med. Hyg. 104, 766–773 (2020).
Moreau, G. B. et al. Childhood growth and neurocognition are associated with distinct sets of metabolites. EBioMedicine 44, 597–606 (2019).
pubmed: 31133540
pmcid: 6604877
doi: 10.1016/j.ebiom.2019.05.043
Guerrant, R. L. et al. Biomarkers of environmental enteropathy, inflammation, stunting, and impaired growth in children in Northeast Brazil. PLoS ONE 11, e0158772 (2016).
pubmed: 27690129
pmcid: 5045163
doi: 10.1371/journal.pone.0158772
Syed, S. et al. High SMAD7 and p-SMAD2,3 expression is associated with environmental enteropathy in children. PLoS Negl. Trop. Dis. 12, e0006224 (2018).
pubmed: 29415065
pmcid: 5819826
doi: 10.1371/journal.pntd.0006224
Xu, H. et al. Gluten-sensitive enteropathy coincides with decreased capability of intestinal T cells to secrete IL-17 and IL-22 in a macaque model for celiac disease. Clin. Immunol. 147, 40–49 (2013).
pubmed: 23518597
pmcid: 3732447
doi: 10.1016/j.clim.2013.02.012
Norsa, L. et al. The colon as an energy salvage organ for children with short bowel syndrome. Am. J. Clin. Nutr. 109, 1112–1118 (2019).
pubmed: 30924493
doi: 10.1093/ajcn/nqy367
Jeppesen, P. B. & Mortensen, P. B. Colonic digestion and absorption of energy from carbohydrates and medium-chain fat in small bowel failure. J. Parenter. Enteral Nutr. 23, S101–S105 (1999).
doi: 10.1177/014860719902300525
McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).
pubmed: 6320630
doi: 10.1093/ajcn/39.2.338
Bingham, S. & Cummings, J. H. Medical Aspects of Dietary Fiber (Plenum, 1980).
Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).
pubmed: 2181501
doi: 10.1152/physrev.1990.70.2.567
Cummings, J. H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983).
pubmed: 6134000
doi: 10.1016/S0140-6736(83)92478-9
Kles, K. A. & Chang, E. B. Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology 130, S100–S105 (2006).
pubmed: 16473056
doi: 10.1053/j.gastro.2005.11.048
Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366–384 (2010).
pubmed: 20937167
doi: 10.1017/S0954422410000247
Lacorn, M., Goerke, M. & Claus, R. Inulin-coated butyrate increases ileal MCT1 expression and affects mucosal morphology in the porcine ileum by reduced apoptosis. J. Anim. Physiol. Anim. Nutr. 94, 670–676 (2010).
doi: 10.1111/j.1439-0396.2009.00955.x
Attia, S. et al. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am. J. Clin. Nutr. 104, 1441–1449 (2016).
pubmed: 27655441
pmcid: 5081715
doi: 10.3945/ajcn.116.130518
Guillen, B. & Atherton, N. S. Short Bowel Syndrome. Vol. 2021 (StatPearls Publishing LLC., 2020).
Nightingale, J. M., Lennard-Jones, J. E., Gertner, D. J., Wood, S. R. & Bartram, C. I. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut 33, 1493–1497 (1992).
pubmed: 1452074
pmcid: 1379534
doi: 10.1136/gut.33.11.1493
Merigo, F. et al. Glucose transporter expression in the human colon. World J. Gastroenterol. 24, 775–793 (2018).
pubmed: 29467549
pmcid: 5807937
doi: 10.3748/wjg.v24.i7.775
Ziegler, T. R. et al. Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am. J. Clin. Nutr. 75, 922–930 (2002).
pubmed: 11976168
doi: 10.1093/ajcn/75.5.922
Adibi, S. A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113, 332–340 (1997).
pubmed: 9207295
doi: 10.1016/S0016-5085(97)70112-4
Le Floc’h, N., Otten, W. & Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41, 1195–1205 (2011).
pubmed: 20872026
doi: 10.1007/s00726-010-0752-7