Reduced infant rhesus macaque growth rates due to environmental enteric dysfunction and association with histopathology in the large intestine.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 01 2022
Historique:
received: 22 04 2021
accepted: 15 12 2021
entrez: 12 1 2022
pubmed: 13 1 2022
medline: 11 2 2022
Statut: epublish

Résumé

Environmental enteric dysfunction is associated with malnutrition as well as infant growth stunting and has been classically defined by villous blunting, decreased crypt-to-villus ratio, and inflammation in the small intestine. Here, we characterized environmental enteric dysfunction among infant rhesus macaques that are naturally exposed to enteric pathogens commonly linked to human growth stunting. Remarkably, despite villous atrophy and histological abnormalities observed in the small intestine, poor growth trajectories and low serum tryptophan levels were correlated with increased histopathology in the large intestine. This work provides insight into the mechanisms underlying this disease and indicates that the large intestine may be an important target for therapeutic intervention.

Identifiants

pubmed: 35017515
doi: 10.1038/s41467-021-27925-x
pii: 10.1038/s41467-021-27925-x
pmc: PMC8752659
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

234

Subventions

Organisme : NIH HHS
ID : P51 OD011092
Pays : United States
Organisme : NIGMS NIH HHS
ID : R25 GM055246
Pays : United States
Organisme : NIH HHS
ID : P51 OD011107
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Harper, K. M., Mutasa, M., Prendergast, A. J., Humphrey, J. & Manges, A. R. Environmental enteric dysfunction pathways and child stunting: a systematic review. PLoS Negl. Trop. Dis. 12, e0006205 (2018).
pubmed: 29351288 pmcid: 5792022 doi: 10.1371/journal.pntd.0006205
Grantham-McGregor, S. et al. Developmental potential in the first 5 years for children in developing countries. Lancet 369, 60–70 (2007).
pubmed: 17208643 pmcid: 2270351 doi: 10.1016/S0140-6736(07)60032-4
Kosek, M. N. et al. Plasma tryptophan and the kynurenine-tryptophan ratio are associated with the acquisition of statural growth deficits and oral vaccine underperformance in populations with environmental enteropathy. Am. J. Trop. Med. Hyg. 95, 928–937 (2016).
pubmed: 27503512 pmcid: 5062803 doi: 10.4269/ajtmh.16-0037
Checkley, W. et al. Multi-country analysis of the effects of diarrhoea on childhood stunting. Int. J. Epidemiol. 37, 816–830 (2008).
pubmed: 18567626 pmcid: 2734063 doi: 10.1093/ije/dyn099
Alvarado, B. E., Zunzunegui, M. V., Delisle, H. & Osorno, J. Growth trajectories are influenced by breast-feeding and infant health in an afro-colombian community. J. Nutr. 135, 2171–2178 (2005).
pubmed: 16140894 doi: 10.1093/jn/135.9.2171
Keusch, G. T. et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr. Bull. 34, 357–364 (2013).
pubmed: 24167916 pmcid: 4643688 doi: 10.1177/156482651303400308
Platts-Mills, J. A. et al. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study. Clin. Infect. Dis. 59(Suppl 4), S233–S238 (2014).
pubmed: 25305292 pmcid: 4204610 doi: 10.1093/cid/ciu408
Lee, G. et al. Symptomatic and asymptomatic campylobacter infections associated with reduced growth in Peruvian children. PLoS Negl. Trop. Dis. 7, e2036 (2013).
pubmed: 23383356 pmcid: 3561130 doi: 10.1371/journal.pntd.0002036
Amour, C. et al. Epidemiology and impact of campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin. Infect. Dis. 63, 1171–1179 (2016).
pubmed: 27501842 pmcid: 5064165
Sanchez, J. J. et al. Campylobacter infection and household factors are associated with childhood growth in urban Bangladesh: an analysis of the MAL-ED study. PLoS Negl. Trop. Dis. 14, e0008328 (2020).
pubmed: 32407313 pmcid: 7252635 doi: 10.1371/journal.pntd.0008328
Lunn, P. G. The impact of infection and nutrition on gut function and growth in childhood. Proc. Nutr. Soc. 59, 147–154 (2000).
pubmed: 10828184 doi: 10.1017/S0029665100000173
Tickell, K. D., Atlas, H. E. & Walson, J. L. Environmental enteric dysfunction: a review of potential mechanisms, consequences and management strategies. BMC Med. 17, 181 (2019).
pubmed: 31760941 pmcid: 6876067 doi: 10.1186/s12916-019-1417-3
Crane, R. J., Jones, K. D. & Berkley, J. A. Environmental enteric dysfunction: an overview. Food Nutr. Bull. 36, S76–S87 (2015).
pubmed: 25902619 pmcid: 4472379 doi: 10.1177/15648265150361S113
Korpe, P. S. & Petri, W. A. Jr. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol. Med. 18, 328–336 (2012).
pubmed: 22633998 pmcid: 3372657 doi: 10.1016/j.molmed.2012.04.007
Keusch, G. T. et al. Environmental enteric dysfunction: pathogenesis, diagnosis, and clinical consequences. Clin. Infect. Dis. 59, S207–S212 (2014).
pubmed: 25305288 pmcid: 4481570 doi: 10.1093/cid/ciu485
Prongay, K., Park, B. & Murphy, S. J. Risk factor analysis may provide clues to diarrhea prevention in outdoor-housed rhesus macaques (Macaca mulatta). Am. J. Primatol. 75, 872–882 (2013).
pubmed: 23568382 pmcid: 3956043 doi: 10.1002/ajp.22150
Haertel, A. J., Prongay, K., Gao, L., Gottlieb, D. H. & Park, B. Standard growth and diarrhea-associated growth faltering in captive infant rhesus macaques (Macaca mulatta). Am. J. Primatol. 80, e22923 (2018).
pubmed: 30281825 pmcid: 6405262 doi: 10.1002/ajp.22923
Laing, S. T. et al. Idiopathic colitis in rhesus macaques is associated with dysbiosis, abundant enterochromaffin cells and altered T-cell cytokine expression. Vet. Pathol. 55, 741–752 (2018).
pubmed: 29929446 doi: 10.1177/0300985818780449
Quintel, B. K. et al. Vaccine-mediated protection against Campylobacter-associated enteric disease. Sci. Adv. 6, eaba4511 (2020).
pubmed: 32637610 pmcid: 7314533 doi: 10.1126/sciadv.aba4511
Ngure, F. M. et al. Water, sanitation, and hygiene (WASH), environmental enteropathy, nutrition, and early child development: making the links. Ann. N. Y. Acad. Sci. 1308, 118–128 (2014).
pubmed: 24571214 doi: 10.1111/nyas.12330
Yasuda, K. et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17, 385–391 (2015).
pubmed: 25732063 pmcid: 4369771 doi: 10.1016/j.chom.2015.01.015
Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl Acad. Sci. USA 113, 10376–10381 (2016).
pubmed: 27573830 pmcid: 5027417 doi: 10.1073/pnas.1521835113
Rhoades, N. et al. Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biol. 20, 173 (2019).
pubmed: 31451108 pmcid: 6709555 doi: 10.1186/s13059-019-1789-x
Claas, E. C., Burnham, C. A., Mazzulli, T., Templeton, K. & Topin, F. Performance of the xTAG(R) gastrointestinal pathogen panel, a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. J. Microbiol. Biotechnol. 23, 1041–1045 (2013).
pubmed: 23711521 doi: 10.4014/jmb.1212.12042
Coste, J. F. et al. Microbiological diagnosis of severe diarrhea in kidney transplant recipients by use of multiplex PCR assays. J. Clin. Microbiol. 51, 1841–1849 (2013).
pubmed: 23554205 pmcid: 3716061 doi: 10.1128/JCM.03366-12
Mengelle, C. et al. Simultaneous detection of gastrointestinal pathogens with a multiplex Luminex-based molecular assay in stool samples from diarrhoeic patients. Clin. Microbiol. Infect. 19, E458–E465 (2013).
pubmed: 23714194 doi: 10.1111/1469-0691.12255
Sestak, K. et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect. Immun. 71, 4079–4086 (2003).
pubmed: 12819098 pmcid: 162015 doi: 10.1128/IAI.71.7.4079-4086.2003
Mal-Ed Network Investigators. Relationship between growth and illness, enteropathogens and dietary intakes in the first 2 years of life: findings from the MAL-ED birth cohort study. BMJ Glob. Health 2, e000370 (2017).
doi: 10.1136/bmjgh-2017-000370
Rogawski, E. T. et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 6, e1319–e1328 (2018).
pubmed: 30287125 pmcid: 6227248 doi: 10.1016/S2214-109X(18)30351-6
Haque, M. A. et al. Determinants of Campylobacter infection and association with growth and enteric inflammation in children under 2 years of age in low-resource settings. Sci. Rep. 9, 17124 (2019).
pubmed: 31748573 pmcid: 6868199 doi: 10.1038/s41598-019-53533-3
Moore, S. R. et al. Prolonged episodes of acute diarrhea reduce growth and increase risk of persistent diarrhea in children. Gastroenterology 139, 1156–1164 (2010).
pubmed: 20638937 doi: 10.1053/j.gastro.2010.05.076
Mondal, D., Petri, W. A. Jr., Sack, R. B., Kirkpatrick, B. D. & Haque, R. Entamoeba histolytica-associated diarrheal illness is negatively associated with the growth of preschool children: evidence from a prospective study. Trans. R Soc. Trop. Med. Hyg. 100, 1032–1038 (2006).
pubmed: 16730764 doi: 10.1016/j.trstmh.2005.12.012
Gutierrez-Jimenez, J. et al. Children from a rural region in the Chiapas Highlands, Mexico, show an increased risk of stunting and intestinal parasitoses when compared with urban children. Bol. Med. Hosp. Infant Mex. 76, 18–26 (2019).
pubmed: 30657470
Aiemjoy, K. et al. Epidemiology of soil-transmitted helminth and intestinal protozoan infections in preschool-aged children in the Amhara Region of Ethiopia. Am. J. Trop. Med. Hyg. 96, 866–872 (2017).
pubmed: 28167597 pmcid: 5392634
Liu, T. C. et al. A novel histological index for evaluation of environmental enteric dysfunction identifies geographic-specific features of enteropathy among children with suboptimal growth. PLoS Negl Trop Dis 14, e0007975 (2020).
pubmed: 31929525 pmcid: 6980693 doi: 10.1371/journal.pntd.0007975
Bethune, M. T. et al. A non-human primate model for gluten sensitivity. PLoS ONE 3, e1614 (2008).
pubmed: 18286171 pmcid: 2229647 doi: 10.1371/journal.pone.0001614
Chacko, C. J., Paulson, K. A., Mathan, V. I. & Baker, S. J. The villus architecture of the small intestine in the tropics: a necropsy study. J. Pathol. 98, 146–151 (1969).
pubmed: 5352370 doi: 10.1002/path.1710980209
Ali, A., Iqbal, N. T. & Sadiq, K. Environmental enteropathy. Curr. Opin. Gastroenterol. 32, 12–17 (2016).
pubmed: 26574871 doi: 10.1097/MOG.0000000000000226
Rhoades, N. S. et al. Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen. Mucosal Immunol. https://doi.org/10.1038/s41385-41021-00418-41382 (2021).
Gazi, M. A. et al. Plasma kynurenine to tryptophan ratio is negatively associated with linear growth of children living in a slum of Bangladesh: results from a community-based intervention study. Am. J. Trop. Med. Hyg. 104, 766–773 (2020).
Moreau, G. B. et al. Childhood growth and neurocognition are associated with distinct sets of metabolites. EBioMedicine 44, 597–606 (2019).
pubmed: 31133540 pmcid: 6604877 doi: 10.1016/j.ebiom.2019.05.043
Guerrant, R. L. et al. Biomarkers of environmental enteropathy, inflammation, stunting, and impaired growth in children in Northeast Brazil. PLoS ONE 11, e0158772 (2016).
pubmed: 27690129 pmcid: 5045163 doi: 10.1371/journal.pone.0158772
Syed, S. et al. High SMAD7 and p-SMAD2,3 expression is associated with environmental enteropathy in children. PLoS Negl. Trop. Dis. 12, e0006224 (2018).
pubmed: 29415065 pmcid: 5819826 doi: 10.1371/journal.pntd.0006224
Xu, H. et al. Gluten-sensitive enteropathy coincides with decreased capability of intestinal T cells to secrete IL-17 and IL-22 in a macaque model for celiac disease. Clin. Immunol. 147, 40–49 (2013).
pubmed: 23518597 pmcid: 3732447 doi: 10.1016/j.clim.2013.02.012
Norsa, L. et al. The colon as an energy salvage organ for children with short bowel syndrome. Am. J. Clin. Nutr. 109, 1112–1118 (2019).
pubmed: 30924493 doi: 10.1093/ajcn/nqy367
Jeppesen, P. B. & Mortensen, P. B. Colonic digestion and absorption of energy from carbohydrates and medium-chain fat in small bowel failure. J. Parenter. Enteral Nutr. 23, S101–S105 (1999).
doi: 10.1177/014860719902300525
McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).
pubmed: 6320630 doi: 10.1093/ajcn/39.2.338
Bingham, S. & Cummings, J. H. Medical Aspects of Dietary Fiber (Plenum, 1980).
Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).
pubmed: 2181501 doi: 10.1152/physrev.1990.70.2.567
Cummings, J. H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983).
pubmed: 6134000 doi: 10.1016/S0140-6736(83)92478-9
Kles, K. A. & Chang, E. B. Short-chain fatty acids impact on intestinal adaptation, inflammation, carcinoma, and failure. Gastroenterology 130, S100–S105 (2006).
pubmed: 16473056 doi: 10.1053/j.gastro.2005.11.048
Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23, 366–384 (2010).
pubmed: 20937167 doi: 10.1017/S0954422410000247
Lacorn, M., Goerke, M. & Claus, R. Inulin-coated butyrate increases ileal MCT1 expression and affects mucosal morphology in the porcine ileum by reduced apoptosis. J. Anim. Physiol. Anim. Nutr. 94, 670–676 (2010).
doi: 10.1111/j.1439-0396.2009.00955.x
Attia, S. et al. Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. Am. J. Clin. Nutr. 104, 1441–1449 (2016).
pubmed: 27655441 pmcid: 5081715 doi: 10.3945/ajcn.116.130518
Guillen, B. & Atherton, N. S. Short Bowel Syndrome. Vol. 2021 (StatPearls Publishing LLC., 2020).
Nightingale, J. M., Lennard-Jones, J. E., Gertner, D. J., Wood, S. R. & Bartram, C. I. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut 33, 1493–1497 (1992).
pubmed: 1452074 pmcid: 1379534 doi: 10.1136/gut.33.11.1493
Merigo, F. et al. Glucose transporter expression in the human colon. World J. Gastroenterol. 24, 775–793 (2018).
pubmed: 29467549 pmcid: 5807937 doi: 10.3748/wjg.v24.i7.775
Ziegler, T. R. et al. Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am. J. Clin. Nutr. 75, 922–930 (2002).
pubmed: 11976168 doi: 10.1093/ajcn/75.5.922
Adibi, S. A. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113, 332–340 (1997).
pubmed: 9207295 doi: 10.1016/S0016-5085(97)70112-4
Le Floc’h, N., Otten, W. & Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41, 1195–1205 (2011).
pubmed: 20872026 doi: 10.1007/s00726-010-0752-7

Auteurs

Sara M Hendrickson (SM)

Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.

Archana Thomas (A)

Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.

Kamm Prongay (K)

Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Andrew J Haertel (AJ)

Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.

Laura M Garzel (LM)

California National Primate Research Center, University of California, Davis, Davis, CA, USA.

Leanne Gill (L)

California National Primate Research Center, University of California, Davis, Davis, CA, USA.

Tasha Barr (T)

Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.

Nicholas S Rhoades (NS)

Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.

Rachel Reader (R)

California National Primate Research Center, University of California, Davis, Davis, CA, USA.

Mark Galan (M)

Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ, USA.

Julie M Carroll (JM)

Division of Cardiometabolic Health and Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.

Charles T Roberts (CT)

Division of Cardiometabolic Health and Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA.

Lina Gao (L)

Biostatistics and Bioinformatics Core, Oregon National Primate Research Center, and Biostatistics Shared Resource, Knight Cancer Institute, Portland, OR, 97239, USA.

Ian J Amanna (IJ)

Najít Technologies, Inc., Beaverton, OR, 97006, USA.

Ilhem Messaoudi (I)

Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.

Mark K Slifka (MK)

Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA. slifkam@ohsu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH