Exercise as a Moderator of Persistent Neuroendocrine Symptoms of COVID-19.
Journal
Exercise and sport sciences reviews
ISSN: 1538-3008
Titre abrégé: Exerc Sport Sci Rev
Pays: United States
ID NLM: 0375434
Informations de publication
Date de publication:
01 04 2022
01 04 2022
Historique:
pubmed:
13
1
2022
medline:
17
3
2022
entrez:
12
1
2022
Statut:
ppublish
Résumé
Precipitated by chronic psychological stress, immune system dysregulation, and a hyperinflammatory state, the sequelae of postacute COVID-19 (long COVID) include depression and new-onset diabetes. We hypothesize that exercise counters the neuropsychiatric and endocrine sequelae of long COVID by inducing the release of circulating factors that mediate the anti-inflammatory response, support brain homeostasis, and increase insulin sensitivity.
Identifiants
pubmed: 35019862
doi: 10.1249/JES.0000000000000284
pii: 00003677-202204000-00002
pmc: PMC8900884
mid: NIHMS1767127
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
65-72Subventions
Organisme : NIA NIH HHS
ID : K99 AG065419
Pays : United States
Organisme : NIA NIH HHS
ID : R00 AG065419
Pays : United States
Organisme : NIGMS NIH HHS
ID : U54 GM104940
Pays : United States
Informations de copyright
Copyright © 2022 by the American College of Sports Medicine.
Références
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat. Med . 2021; 27(4):601–15.
Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science . 2021; 371(6529):eabf4063.
Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature . 2021; 591(7851):639–44.
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol . 2010; 47(3):193–9.
Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab . 2021; 33(8):1565–76.e5.
Sallis R, Young DR, Tartof SY, et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br. J. Sports Med . 2021; 55:1099–105.
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev . 2000; 21(1):55–89.
Golden SH, Lazo M, Carnethon M, et al. Examining a bidirectional association between depressive symptoms and diabetes. JAMA . 2008; 299(23):2751–9.
Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care . 2001; 24(6):1069–78.
Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing's syndrome: state of the art. Lancet Diabetes Endocrinol . 2016; 4(7):611–29.
Lustman PJ, Griffith LS, Clouse RE, et al. Effects of nortriptyline on depression and glycemic control in diabetes: results of a double-blind, placebo-controlled trial. Psychosom. Med . 1997; 59(3):241–50.
Katon WJ, Von Korff M, Lin EH, et al. The pathways study: a randomized trial of collaborative care in patients with diabetes and depression. Arch. Gen. Psychiatry . 2004; 61(10):1042–9.
Cha DS, Best MW, Bowie CR, et al. A randomized, double-blind, placebo-controlled, crossover trial evaluating the effect of intranasal insulin on cognition and mood in individuals with treatment-resistant major depressive disorder. J. Affect. Disord . 2017; 210:57–65.
Guo M, Mi J, Jiang QM, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin. Exp. Pharmacol. Physiol . 2014; 41(9):650–6.
Ackermann RT, Edelstein SL, Narayan KM, et al. Changes in health state utilities with changes in body mass in the diabetes prevention program. Obesity (Silver Spring) . 2009; 17(12):2176–81.
Gujral S, Aizenstein H, Reynolds CF 3rd, Butters MA, Erickson KI. Exercise effects on depression: possible neural mechanisms. Gen. Hosp. Psychiatry . 2017; 49:2–10.
Kirwan JP, Sacks J, Nieuwoudt S. The essential role of exercise in the management of type 2 diabetes. Cleve. Clin. J. Med . 2017; 84(7 Suppl. 1):S15–21.
Traustadottir T, Bosch PR, Matt KS. The HPA axis response to stress in women: effects of aging and fitness. Psychoneuroendocrinology . 2005; 30(4):392–402.
Babyak M, Blumenthal JA, Herman S, et al. Exercise treatment for major depression: maintenance of therapeutic benefit at 10 months. Psychosom. Med . 2000; 62(5):633–8.
Lysy Z, Da Costa D, Dasgupta K. The association of physical activity and depression in type 2 diabetes. Diabet. Med . 2008; 25(10):1133–41.
Levinger I, Selig S, Goodman C, Jerums G, Stewart A, Hare DL. Resistance training improves depressive symptoms in individuals at high risk for type 2 diabetes. J. Strength Cond. Res . 2011; 25(8):2328–33.
Piette JD, Richardson C, Himle J, et al. A randomized trial of telephonic counseling plus walking for depressed diabetes patients. Med. Care . 2011; 49(7):641–8.
de Groot M, Doyle T, Kushnick M, et al. Can lifestyle interventions do more than reduce diabetes risk? Treating depression in adults with type 2 diabetes with exercise and cognitive behavioral therapy. Curr. Diab. Rep . 2012; 12(2):157–66.
de Groot M, Shubrook JH, Hornsby WG Jr., et al. Program ACTIVE II: outcomes from a randomized, multistate community-based depression treatment for rural and urban adults with type 2 diabetes. Diabetes Care . 2019; 42(7):1185–93.
Yates T, Gray LJ, Henson J, Edwardson CL, Khunti K, Davies MJ. Impact of depression and anxiety on change to physical activity following a pragmatic diabetes prevention program within primary care: pooled analysis from two randomized controlled trials. Diabetes Care . 2019; 42(10):1847–53.
Kvam S, Kleppe CL, Nordhus IH, Hovland A. Exercise as a treatment for depression: a meta-analysis. J. Affect. Disord . 2016; 202:67–86.
Lin X, Zhang X, Guo J, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc . 2015; 4(7):e002014.
Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat. Rev. Immunol . 2019; 19(12):734–46.
Rui L, Aguirre V, Kim JK, et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J. Clin. Invest . 2001; 107(2):181–9.
Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1–mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha– and obesity-induced insulin resistance. Science . 1996; 271(5249):665–8.
Kim HJ, Higashimori T, Park SY, et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes . 2004; 53(4):1060–7.
Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med . 2007; 356(15):1517–26.
Verma S, Mathew V, Farkouh ME. Targeting inflammation in the prevention and treatment of type 2 diabetes: insights from CANTOS. J. Am. Coll. Cardiol . 2018; 71(21):2402–4.
Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab . 2003; 285(2):E433–7.
del Aguila LF, Claffey KP, Kirwan JP. TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am. J. Phys . 1999; 276(5):E849–55.
Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J . 2003; 17(8):884–6.
Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med . 2011; 17(11):1481–9.
Mooney RA. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol . 2007; 102(2):816–8; discussion 8-9.
Fischer CP. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc. Immunol. Rev . 2006; 12:6–33.
Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes . 2003; 52(3):812–7.
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest . 2006; 116(11):3015–25.
McFarlin BK, Flynn MG, Campbell WW, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J. Gerontol. A Biol. Sci. Med. Sci . 2006; 61(4):388–93.
Stewart LK, Flynn MG, Campbell WW, et al. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun . 2005; 19(5):389–97.
Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes . 2006; 55(3):760–7.
Kirwan JP, Jing M. Modulation of insulin signaling in human skeletal muscle in response to exercise. Exerc. Sport Sci. Rev . 2002; 30(2):85–90.
Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-kappaB signaling in skeletal muscle. J. Appl. Physiol. (1985) . 2007; 103(1):388–95.
Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the regulation of immune functions. Prog. Mol. Biol. Transl. Sci . 2015; 135:355–80.
Lenze EJ, Mattar C, Zorumski CF, et al. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA . 2020; 324(22):2292–300.
Ishima T, Fujita Y, Hashimoto K. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells. Eur. J. Pharmacol . 2014; 727:167–73.
Hotamisligil GS. Inflammation and metabolic disorders. Nature . 2006; 444(7121):860–7.
Muller JA, Gross R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab . 2021; 3(2):149–65.
Kirwan JP, Solomon TP, Wojta DM, Staten MA, Holloszy JO. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab . 2009; 297(1):E151–6.
Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab . 2020; 31(6):1068–77.e3.
Schwingshackl L, Missbach B, Dias S, Konig J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia . 2014; 57(9):1789–97.
Grace A, Chan E, Giallauria F, Graham PL, Smart NA. Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc. Diabetol . 2017; 16(1):37.
American College of Sports Medicine. ACSM's Guidelines for Exercise Testing and Prescription . 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2022. 548 p.