Exposure to microplastics leads to a defective ovarian function and change in cytoskeleton protein expression in rat.


Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
May 2022
Historique:
received: 02 08 2021
accepted: 15 12 2021
pubmed: 19 1 2022
medline: 11 5 2022
entrez: 18 1 2022
Statut: ppublish

Résumé

Microplastics (MPs) are ubiquitous environmental contaminants; through their physicochemical properties, they can have potentially negative effects on the environment as well as on animal and human health. Studies addressing the toxicity of MPs on mammalian female reproduction are almost absent. Thus, the main objective of the present study was to assess the impact of oral exposure, during four estrous cycles, of 5 µm polystyrene-type microplastics (PS-MPs) on ovarian function in rats. Particles of PS-MPs were detected in the duodenum and, for the first time, in the different compartments of the ovarian tissue. The toxicity of accumulated PS-MPs was manifested by the reduced relative ovarian weights, by the alteration in the folliculogenesis and in the estrous cycle duration, and by the reduced serum concentration of estradiol. The defective ovarian function following PS-MP treatment might be due to the induction of oxidative stress, which has been proved by an increased malondialdehyde (MDA) concentration and an increased superoxide dismutase (SOD) and catalase (CAT) activities as well as a decreased protein sulfhydryl (PSH) level in the rat ovary. Importantly, by immunofluorescence and RT-PCR, we demonstrated a significant decrease in the expression of cytoskeletal proteins: α-tubulin and disheveled-associated activator of morphogenesis (DAAM-1) in the ovary of rats exposed to PS-MPs at proteomic and transcriptomic levels. Our results uncovered, for the first time, the distribution and accumulation of PS-MPs across rat ovary, revealed a significant alteration in some biomarkers of the ovarian function, and highlighted the possible involvement of MP-induced disturbance of cytoskeleton in these adverse effects.

Identifiants

pubmed: 35040070
doi: 10.1007/s11356-021-18218-3
pii: 10.1007/s11356-021-18218-3
doi:

Substances chimiques

Antioxidants 0
Microplastics 0
Plastics 0
Polystyrenes 0
Water Pollutants, Chemical 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

34594-34606

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abedini A, Zamberlam G, Lapointe E, Tourigny C, Boyer A, Paquet M, Boerboom D (2016) WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. Faseb J 30(4):1534–1547. https://doi.org/10.1096/fj.15-280313
doi: 10.1096/fj.15-280313
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
doi: 10.1016/s0076-6879(84)05016-3
Amereh F, Babaei M, Eslami A, Fazelipour S, Rafiee M (2020) The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: from a hypothetical scenario to a global public health challenge. Environ Pollut 261:114158. https://doi.org/10.1016/j.envpol.2020.114158
doi: 10.1016/j.envpol.2020.114158
An R, Wang X, Yang L, Zhang J, Wang N, Xu F, Zhang L (2021) Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 449:152665. https://doi.org/10.1016/j.tox.2020.152665
doi: 10.1016/j.tox.2020.152665
Banni M, Negri A, Mignone F, Boussetta H, Viarengo A, Dondero F (2011) Gene expression rhythms in the mussel Mytilus galloprovincialis (Lam.) across an annual cycle. PLoS One 6(5):e18904. https://doi.org/10.1371/journal.pone.0018904
doi: 10.1371/journal.pone.0018904
Banni M, Negri A, Rebelo M, Rapallo F, Boussetta H, Viarengo A, Dondero F (2009) Expression analysis of the molluscan p53 protein family mRNA in mussels (Mytilus spp.) exposed to organic contaminants. Comp Biochem Physiol C ToxicolPharmacol 149(3):414–418. https://doi.org/10.1016/j.cbpc.2008.09.017
doi: 10.1016/j.cbpc.2008.09.017
Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol 42(13):5026–5031. https://doi.org/10.1021/es800249a
doi: 10.1021/es800249a
Bruck S, Ford AT (2018) Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus. Environ Pollut 233:1125–1130. https://doi.org/10.1016/j.envpol.2017.10.015
doi: 10.1016/j.envpol.2017.10.015
Carbery M, O’Connor W, Palanisami T (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409. https://doi.org/10.1016/j.envint.2018.03.007
doi: 10.1016/j.envint.2018.03.007
Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep 7:46687. https://doi.org/10.1038/srep46687
doi: 10.1038/srep46687
Deng Y, Yan Z, Shen R, Huang Y, Ren H, Zhang Y (2021) Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J Hazard Mater 15:124644. https://doi.org/10.1016/j.jhazmat.2020.124644
doi: 10.1016/j.jhazmat.2020.124644
Elizalde-Velázquez A, Carcano AM, Crago J, Green MJ, Shah SA, Cañas-Carrell JE (2020) Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. Environ Pollut 259:113937. https://doi.org/10.1016/j.envpol.2020.113937
doi: 10.1016/j.envpol.2020.113937
Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3. https://doi.org/10.1016/j.envpol.2013.01.046
doi: 10.1016/j.envpol.2013.01.046
Felten V, Toumi H, Masfaraud JF, Billoir E, Camara BI, Férard JF (2020) Microplastics enhance Daphnia magna sensitivity to the pyrethroid insecticide deltamethrin: effects on life history traits. Sci Total Environ 714:136567. https://doi.org/10.1016/j.scitotenv.2020.136567
doi: 10.1016/j.scitotenv.2020.136567
Galloway TS, Lewis CN (2016) Marine microplastics spell big problems for future generations. Proc Nat Acad Sci USA 113(9):2331–2333. https://doi.org/10.1073/pnas.1600715113
doi: 10.1073/pnas.1600715113
Goldman RD, Milsted A, Schloss JA, Starger J, Yerna MJ (1979) Cytoplasmic fibers in mammalian cells: cytoskeletal and contractile elements. Annu Rev Physiol 41:703–722. https://doi.org/10.1146/annurev.ph.41.030179.003415
doi: 10.1146/annurev.ph.41.030179.003415
Gupta S, Ghulmiyyah J, Sharma R, Halabi J, Agarwal A (2014) Power of proteomics in linking oxidative stress and female infertility. Biomed Res Int 2014:916212. https://doi.org/10.1155/2014/916212
doi: 10.1155/2014/916212
Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of rho regulates vertebrate gastrulation and requires a novel formin homology protein Daam1. Cell 107(7):843–854. https://doi.org/10.1016/s0092-8674(01)00614-6
doi: 10.1016/s0092-8674(01)00614-6
Hamed M, Soliman HA, OsmanAG, Sayed AEDH(2020) Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environ Sci Pollut Res 1-8. https://doi.org/10.1007/s11356-020-07898-y
Haemer J, Gutow L, Köhler A, Saborowski R (2014) Fate of microplastics in the marine isopod Idotea emarginata. Environ Sci Technol 48(22):13451–13458. https://doi.org/10.1021/es501385y
doi: 10.1021/es501385y
Hirshfield N (1987) Histological assessment of follicular development and its applicability to risk assessment. Reprod Toxicol 1(1):71–79. https://doi.org/10.1016/0890-6238(87)90074-8
doi: 10.1016/0890-6238(87)90074-8
Hirt N, Body-Malapel M (2020) Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Toxicology 17:57. https://doi.org/10.1186/s12989-020-00387-7
doi: 10.1186/s12989-020-00387-7
Hou J, Lei Z, Cui L, Hou Y, Yang L, An R, Zhang L (2021) Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/caspase-1 signaling pathway in rats. Ecotoxicol Environ Saf 212:112012. https://doi.org/10.1016/j.ecoenv.2021.112012
doi: 10.1016/j.ecoenv.2021.112012
Hu LL, Zhou X, Zhang HL, Wu LL, Tang LS, Chen LL, Duan JL (2018) Exposure to podophyllotoxin inhibits oocyte meiosis by disturbing meiotic spindle formation. Sci Rep 8(1):10145. https://doi.org/10.1038/s41598-018-28544-1
doi: 10.1038/s41598-018-28544-1
Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36(10):1199–1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
doi: 10.1016/j.freeradbiomed.2004.02.074
Jeong CB, Kang HM, Lee MC, Kim DH, Han J, Hwang DS, Lee JS (2017) Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep 7:41323. https://doi.org/10.1038/srep41323
doi: 10.1038/srep41323
Jeong CB, Won EJ, Kang HM, Lee MC, Hwang DS, Hwang UK, Lee JS (2016) Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ Sci Technol 50(16):8849–8857. https://doi.org/10.1021/acs.est.6b01441
doi: 10.1021/acs.est.6b01441
Jin H, Ma T, Sha X, Liu Z, Zhou Y, Meng X, Chen Y, Han X, Ding J (2021) Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater 5(401):123430. https://doi.org/10.1016/j.jhazmat.2020.123430
doi: 10.1016/j.jhazmat.2020.123430
Kalo D, Vitorino Carvalho A, Archilla C, Duranthon V, Moroldo M, Levin Y, Roth Z (2019) Mono(2-ethylhexyl) phthalate (MEHP) induces transcriptomic alterations in oocytes and their derived blastocysts. Toxicology 421:59–73. https://doi.org/10.1016/j.tox.2019.04.016
doi: 10.1016/j.tox.2019.04.016
Kida YS, Sato T, Miyasaka KY, Suto A, Ogura T (2007) Daam1 regulates the endocytosis of EphB during the convergent extension of the zebrafish notochord. Proc Natl Acad Sci U S A104(16):6708–6713. https://doi.org/10.1073/pnas.0608946104
doi: 10.1073/pnas.0608946104
Kruger J (1994) The Bradford method for protein quantitation. Meth Mol Biol 32:9–15
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
Lu L, WanZ LT, Fu Z, Jin Y (2018a) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631:449–458
doi: 10.1016/j.scitotenv.2018.03.051
Lu Y, Li S, Cui Z, Dai X, Zhang M, Miao Y, Xiong B (2018b) The cohesion establishment factor Esco1 acetylates α-tubulin to ensure proper spindle assembly in oocyte meiosis. Nucleic Acids Res 46(5):2335–2346. https://doi.org/10.1093/nar/gky001
doi: 10.1093/nar/gky001
Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, Ren H (2016) Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ Sci Technol 50(7):4054–4060. https://doi.org/10.1021/acs.est.6b00183
doi: 10.1021/acs.est.6b00183
Luo T, Zhang Y, Wang C, Wang X, Zhou J, Shen M, Jin Y (2019) Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ Pollut 255(Pt 1):113122. https://doi.org/10.1016/j.envpol.2019.113122
doi: 10.1016/j.envpol.2019.113122
MagniS DT, C, Garrone G, D’Amato A, Parenti CC, Binelli A, (2019) First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. Environ Pollut 250:407–415. https://doi.org/10.1016/j.envpol.2019.04.088
MarklundS MG (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
doi: 10.1111/j.1432-1033.1974.tb03714.x
Missawi O, Bousserrhine N, Belbekhouche S, Zitouni N, Alphonse V, Boughattas I, Banni M (2020) Abundance and distribution of small microplastics (≤ 3 μm) in sediments and seaworms from the Southern Mediterranean coasts and characterisation of their potential harmful effects. Environ Pollut 263:114634
doi: 10.1016/j.envpol.2020.114634
Pariante P, Dotolo R, Venditti M, Ferrara D, Donizetti A, Aniello F, Minucci S (2016) First Evidence of DAAM1 Localization during the post-natal development of rat testis and in mammalian sperm. J Cell Physiol 231(10):2172–2184. https://doi.org/10.1002/jcp.25330
doi: 10.1002/jcp.25330
Park Y, Abihssira-García IS, Thalmann S, Wiegertjes GF, Barreda DR, Olsvik PA, Kiron V (2020) Imaging flow cytometry protocols for examining phagocytosis of microplastics and bioparticles by immune cells of aquatic animals. Front Immunol 11:203. https://doi.org/10.3389/fimmu.2020.00203
doi: 10.3389/fimmu.2020.00203
Prokic MD, Radovanović TB, Gavrić JP, Faggio C (2019) Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC 111:37–46
Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, Ren H, Zhang Y (2019) Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 236:124334. https://doi.org/10.1016/j.chemosphere.2019.07.065
doi: 10.1016/j.chemosphere.2019.07.065
Sedlack J, Lindsay RH (1968) Measurement of protein sulfhydrils with the Ellman’s reagent. Anal Biochem 24:192–205
doi: 10.1016/0003-2697(68)90092-4
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet ME, Huvet A (2016) Oyster reproduction is affected by exposure to polystyrene microplastics. Proc Natl Acad Sci U S A 113(9):2430–2435. https://doi.org/10.1073/pnas.1519019113
doi: 10.1073/pnas.1519019113
Triebskorn R, Braunbeck T, Grummt T, Hanslik L, Huppertsberg S, Jekel M, Köhler R (2019) Relevance of nano-and microplastics for freshwater ecosystems: a critical review. Analyt Chem 110:375–392. https://doi.org/10.1016/j.ecoenv.2021.112012
doi: 10.1016/j.ecoenv.2021.112012
Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5(3):367–377. https://doi.org/10.1016/s1534-5807(03)00266-1
doi: 10.1016/s1534-5807(03)00266-1
Viguié C, Mhaouty-Kodja S, Habert R, Chevrier C, Cécile Michel C, Pasquier E (2018) Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle. Mol Cell Endocrinol 5(475):10–28. https://doi.org/10.1016/j.mce.2018.02.007
doi: 10.1016/j.mce.2018.02.007
Volkheimer G, Schulz FH (1968) The phenomenon of persorption: persorption, dissemination, and elimination of microparticles. Digestion 1:213–218. https://doi.org/10.1159/000196856
Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, Jin Y (2019) Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere 217:646–658. https://doi.org/10.1016/j.chemosphere.2018.11.070
doi: 10.1016/j.chemosphere.2018.11.070
Wang T, Han J, Duan X, Xiong B, Cui XS, Kim NH, Sun SC (2016) The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget 7(22):32554–32565. https://doi.org/10.18632/oncotarget.8689
doi: 10.18632/oncotarget.8689
Watts AJR, Lewis C, Goodhead RM, Becket SJ, Moger J, Tyler CR, Galloway TS (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48:8823–8830. https://doi.org/10.1021/es501090e
doi: 10.1021/es501090e
Wilson C, González-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 9:381. https://doi.org/10.3389/fncel.2015.00381
doi: 10.3389/fncel.2015.00381
Wright SL, Rowe D, Thompson RC, Galloway TS (2013) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23(23):R1031-1033. https://doi.org/10.1016/j.cub.2013.10.068
doi: 10.1016/j.cub.2013.10.068
Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647. https://doi.org/10.1021/acs.est.7b00423
doi: 10.1021/acs.est.7b00423
Xie X, Deng T, Duan J, Xie J, Yuan J, Chen M (2020) Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol Environ Saf 190:110133. https://doi.org/10.1016/j.ecoenv.2019.110133
doi: 10.1016/j.ecoenv.2019.110133
Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15(2):212–216. https://doi.org/10.1016/0006-2944(76)90049-1
doi: 10.1016/0006-2944(76)90049-1
Yasunaga T, Hoff S, Schell C, Helmstädter M, Kretz O, Kuechlin S, Walz G (2015) The polarity protein inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J Cell Biol 211(5):963–973. https://doi.org/10.1083/jcb.201502043
doi: 10.1083/jcb.201502043
Yang YF, Chen CY, Lu TH, Liao CM (2019) Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater 366:703–713. https://doi.org/10.1016/j.jhazmat.2018.12.048
doi: 10.1016/j.jhazmat.2018.12.048
Zhang Y, Han J, Zhu CC, Cui TF, XS, Kim NH, Sun SC, (2016) Exposure to HT-2 toxin causes oxidative stress induced apoptosis/autophagy in porcine oocytes. Sci Rep 6:33904. https://doi.org/10.1038/srep33904
doi: 10.1038/srep33904
Zhu K, Jia H, Sun Y, Dai Y, Zhang C, Guo X, Zhu L (2020) Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: roles of reactive oxygen species. Water Res 173:115564. https://doi.org/10.1016/j.watres.2020.115564
doi: 10.1016/j.watres.2020.115564
Zitouni N, BousserrhineN Belbekhouche S, Missawi O, Alphonse V, Boughatass I, Banni M (2020) First report on the presence of small microplastics (≤ 3 μm) in tissue of the commercial fish Serranus scriba (Linnaeus. 1758) from Tunisian coasts and associated cellular alterations. Environ Pollut 263(Pt A):114576. https://doi.org/10.1016/j.envpol.2020.114576

Auteurs

Asma Haddadi (A)

LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia.

Kaouthar Kessabi (K)

LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia.

Sana Boughammoura (S)

LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia.

Mariem Ben Rhouma (MB)

LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia.

Rania Mlouka (R)

UR13AGR08: Biochimie Et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia.

Mohamed Banni (M)

UR13AGR08: Biochimie Et Ecotoxicologie, ISA Chott-Mariem, Université de Sousse, Sousse, Tunisia.

Imed Messaoudi (I)

LR11ES41, Institut Supérieur de Biotechnologie de Monastir, Laboratoire LR11ES41 Génétique Biodiversité Et Valorisation Des Bio-Ressources, Université de Monastir, 5000, Monastir, Tunisia. imed_messaoudi@yahoo.fr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH