Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 01 2022
Historique:
received: 19 05 2021
accepted: 04 01 2022
entrez: 20 1 2022
pubmed: 21 1 2022
medline: 5 3 2022
Statut: epublish

Résumé

Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.

Identifiants

pubmed: 35046467
doi: 10.1038/s41598-022-04994-6
pii: 10.1038/s41598-022-04994-6
pmc: PMC8770691
doi:

Substances chimiques

Amino Acids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1008

Informations de copyright

© 2022. The Author(s).

Références

Tomita, M. & Kami, K. Systems biology, metabolomics, and cancer metabolism. Science 336, 990 (2012).
pubmed: 22628644 doi: 10.1126/science.1223066
Halama, A. Metabolomics in cell culture–a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 15(564), 100–109 (2014).
doi: 10.1016/j.abb.2014.09.002
Fouad, Y. A. & Aanei, C. Revisiting the hallmarks of cancer. Am J Cancer Res. 7, 1016–1036 (2017).
pubmed: 28560055 pmcid: 5446472
Cao, M. D. et al. Metabolic characterization of triple negative breast cancer. BMC Cancer 14, 941 (2014).
pubmed: 25495193 pmcid: 4295321 doi: 10.1186/1471-2407-14-941
Zhang, J., Pavlova, N. N. & Thompson, C. B. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 36(10), 1302–1315 (2017).
pubmed: 28420743 pmcid: 5430235 doi: 10.15252/embj.201696151
DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us?. Cell 148(6), 1132–1144 (2012).
pubmed: 22424225 pmcid: 3337773 doi: 10.1016/j.cell.2012.02.032
Loayza-Puch, F. & Agami, R. Monitoring amino acid deficiencies in cancer. Cell Cycle 15, 2229–2230 (2016).
pubmed: 27245302 pmcid: 5004689 doi: 10.1080/15384101.2016.1191256
Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).
pubmed: 28985563 pmcid: 5684706 doi: 10.1016/j.cell.2017.09.019
Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science. 358(6365), 941–946 (2017).
pubmed: 29025995 pmcid: 5748897 doi: 10.1126/science.aam9305
Feigin, R. D., Klainer, A. S. & Beisel, W. R. Circadian periodicity of blood amino-acids in adult men. Nature 215, 512–514 (1967).
pubmed: 6057913 doi: 10.1038/215512b0
Minami, Y. et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A. 106, 9890–9895 (2009).
pubmed: 19487679 pmcid: 2689311 doi: 10.1073/pnas.0900617106
Ang, J. E. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int. 29, 868–881 (2012).
pubmed: 22823870 pmcid: 3433180 doi: 10.3109/07420528.2012.699122
Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. Proc Natl Acad Sci U S A. 109, 2625–2629 (2012).
pubmed: 22308371 pmcid: 3289302 doi: 10.1073/pnas.1114410109
Krishnaiah, S. Y. et al. Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab. 25, 1206 (2017).
pubmed: 28467936 doi: 10.1016/j.cmet.2017.04.023
Bailey, S. M., Udoh, U. S. & Young, M. E. Circadian regulation of metabolism. J Endocrinol. 222, R75–R96 (2014).
pubmed: 24928941 pmcid: 4109003 doi: 10.1530/JOE-14-0200
Johnston, J. D., Ordovás, J. M., Scheer, F. A. & Turek, F. W. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Adv Nutr. 7, 399–406 (2016).
pubmed: 26980824 pmcid: 4785478 doi: 10.3945/an.115.010777
Lin, R. et al. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Mol Cell. 68, 198–209 (2017).
pubmed: 28985504 doi: 10.1016/j.molcel.2017.09.008
Bass, J. & Takahashi, J. Circadian integration of metabolism and energetics. Science 330(6009), 1349–1354 (2010).
pubmed: 21127246 pmcid: 3756146 doi: 10.1126/science.1195027
Masri, S. & Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 24(12), 1795–1803 (2018).
pubmed: 30523327 pmcid: 6535395 doi: 10.1038/s41591-018-0271-8
Bi, X. & Henry, C. J. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr Diabetes. 7, 249 (2017).
doi: 10.1038/nutd.2016.55
Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 20, 1193–1198 (2014).
pubmed: 25261994 pmcid: 4191991 doi: 10.1038/nm.3686
- Jardim-Perassi BV, Arbab AS, Ferreira LC, Borin TF, Varma NRS, Iskander ASM et al. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One. 2014. 9: e85311.
Lin, F. Altered circadian rhythms and breast cancer: from the human to the molecular level. Front Endocrinol (Lausanne). 9, 219 (2018).
pubmed: 29780357 pmcid: 5945923 doi: 10.3389/fendo.2018.00219
Tahara, Y. & Shibata, S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition. Free Radic Biol Med. 1(119), 129–138 (2018).
doi: 10.1016/j.freeradbiomed.2017.12.026
Li, H. et al. The landscape of cancer cell line metabolism. Nat Med. 25, 850–860 (2019).
pubmed: 31068703 pmcid: 6629041 doi: 10.1038/s41591-019-0404-8
Hojo, H. et al. Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget. 8(21), 34128–34140 (2017).
pubmed: 28388556 pmcid: 5470956 doi: 10.18632/oncotarget.16699
Masri, S. et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165(4), 896–909 (2016).
pubmed: 27153497 pmcid: 5373476 doi: 10.1016/j.cell.2016.04.039
Proenza, A. M., Oliver, J., Palou, A. & Roca, P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. J Nutr Biochem. 14, 133–138 (2003).
pubmed: 12742540 doi: 10.1016/S0955-2863(02)00225-5
Ros-Mazurczyk, M. et al. Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer screening - a pilot study. Acta Biochim Pol. 64, 513–518 (2017).
pubmed: 28803255 doi: 10.18388/abp.2017_1517
Vissers, Y. L. et al. Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency?. Am J Clin Nutr. 81, 1142–1146 (2005).
pubmed: 15883440 doi: 10.1093/ajcn/81.5.1142
Barnes, T. et al. Plasma amino acid profiles of breast cancer patients early in the trajectory of the disease differ from healthy comparison groups. Appl Physiol Nutr Metab. 39, 740–744 (2014).
pubmed: 24819038 doi: 10.1139/apnm-2013-0526
Poschke, I., Mao, Y., Kiessling, R. & Boniface, J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J Transl Med. 11, 290 (2013).
pubmed: 24237611 pmcid: 3835137 doi: 10.1186/1479-5876-11-290
Asiago, V. M. et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 70, 8309–8318 (2010).
pubmed: 20959483 pmcid: 2995269 doi: 10.1158/0008-5472.CAN-10-1319
Manig, F. et al. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol. 242, 30–54 (2017).
pubmed: 27932276 doi: 10.1016/j.jbiotec.2016.12.001
Dang, C. V. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70, 859–862 (2010).
pubmed: 20086171 pmcid: 2818441 doi: 10.1158/0008-5472.CAN-09-3556
Liu, W., Hancock, C. N., Fischer, J. W., Harman, M. & Phang, J. M. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep. 5, 17206 (2015).
pubmed: 26598224 pmcid: 4657043 doi: 10.1038/srep17206
Paul, B., Saradalekshmi, K. R., Alex, A. M. & Banerjee, M. Circadian rhythm of homocysteine is hCLOCK genotype dependent. Mol Biol Rep. 41, 3597–3602 (2014).
pubmed: 24510388 doi: 10.1007/s11033-014-3223-5
Snyder, N. W., Mesaros, C. & Blair, I. A. Translational metabolomics in cancer research. Biomark Med. 9, 821–834 (2015).
pubmed: 26329905 doi: 10.2217/bmm.15.52
Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 8, 15267 (2017).
pubmed: 28492237 pmcid: 5437289 doi: 10.1038/ncomms15267
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).
pubmed: 21760589 pmcid: 3353325 doi: 10.1038/nature10350
Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).
pubmed: 22628656 pmcid: 3526189 doi: 10.1126/science.1218595
Bennegård, K., Lindmark, L., Edén, E., Svaninger, G. & Lundholm, K. Flux of amino acids across the leg in weight-losing cancer patients. Cancer Res. 44, 386–393 (1984).
pubmed: 6690052
Watanabe, A., Higashi, T., Sakata, T. & Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54, 1875–1882 (1984).
pubmed: 6090002 doi: 10.1002/1097-0142(19841101)54:9<1875::AID-CNCR2820540918>3.0.CO;2-O
Cala, M. P. et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J Cachexia Sarcopenia Muscle. 9(2), 348–357 (2018).
pubmed: 29464940 pmcid: 5879957 doi: 10.1002/jcsm.12270
Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).
pubmed: 2305266 doi: 10.1126/science.2305266
Cairns, R. A., Harris, I., McCracken, S. & Mak, T. W. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 76, 299–311 (2011).
pubmed: 22156302 doi: 10.1101/sqb.2011.76.012856
Hoffman, R. M., Stern, P. H., Coalson, D. W., Douglas Wallace, C. & Erbe, R. W. Altered Methionine Metabolism in Cancer Cells. Methods Mol Biol. 1866, 13–26 (2019).
pubmed: 30725404 doi: 10.1007/978-1-4939-8796-2_2
Melone, M. A. B. et al. The carnitine system and cancer metabolic plasticity. Cell Death Dis. 9, 228 (2018).
pubmed: 29445084 pmcid: 5833840 doi: 10.1038/s41419-018-0313-7
Scheerger, S. B. & Zempleni, J. Expression of oncogenes depends on biotin in human small cell lung cancer cells NCI-H69. Int J Vitam Nutr Res. 73(6), 461–467 (2003).
pubmed: 14743551 doi: 10.1024/0300-9831.73.6.461
de Assis, L. V. M. et al. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci. 19, 4 (2018).
doi: 10.3390/ijms19041065
de Assis, L. V. M., Moraes, M. N. & Castrucci, A. M. L. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target?. Cell Mol Life Sci. 76(19), 3801–3826 (2019).
pubmed: 31222374 doi: 10.1007/s00018-019-03183-5
Verlande, A. & Masri, S. Circadian clocks and cancer: time-keeping governs cellular metabolism. Trends Endocrinol Metab. 7(30), 445–458 (2019).
doi: 10.1016/j.tem.2019.05.001
Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 7, 1464–1478 (2013).
doi: 10.1016/j.cell.2013.11.034
Eckel-Mahan, K. L. et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 109(14), 5541–6 (2012).
pubmed: 22431615 pmcid: 3325727 doi: 10.1073/pnas.1118726109
Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell. 158(3), 659–72 (2014).
pubmed: 25083875 pmcid: 5472354 doi: 10.1016/j.cell.2014.06.050
- Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, et al. Role of gut microbiota dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus. 2021. 13(8): e17472.
Costa, D. A. et al. Human microbiota and breast cancer-is there any relevant link? A literature review and new horizons toward personalised medicine. Front Microbiol. 12, 584332 (2021).
pubmed: 33716996 pmcid: 7947609 doi: 10.3389/fmicb.2021.584332
Sampsell, K., Hao, D. & Reimer, R. A. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship. Int J Mol Sci. 21(23), 9239 (2020).
pmcid: 7731103 doi: 10.3390/ijms21239239
Kovács, T. et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep. 9(1), 1300 (2019).
pubmed: 30718646 pmcid: 6361949 doi: 10.1038/s41598-018-37664-7
Hullar, M. A. J., Burnett-Hartman, A. N. & Lampe, J. W. Gut microbes, diet, and cancer. Cancer Treat Res. 159, 377–399 (2014).
pubmed: 24114492 pmcid: 4121395 doi: 10.1007/978-3-642-38007-5_22
Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49(12), 2083–2090 (2017).
pubmed: 28932911 doi: 10.1007/s00726-017-2493-3
Vettore, L., Westbrook, R. L. & Tennant, D. A. New aspects of amino acid metabolism in cancer. Br J Cancer. 122(2), 150–156 (2020).
pubmed: 31819187 doi: 10.1038/s41416-019-0620-5
Lima, A. R. et al. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep. 8(1), 5539 (2018).
pubmed: 29615722 pmcid: 5882858 doi: 10.1038/s41598-018-23847-9
Lima, A. R. et al. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br J Cancer. 121(10), 857–868 (2019).
pubmed: 31588123 pmcid: 6889512 doi: 10.1038/s41416-019-0585-4
Alsaleh, M. et al. Characterization of the urinary metabolic profile of cholangiocarcinoma in a United Kingdom population. Hepat Med. 11, 47–67 (2019).
pubmed: 31118840 pmcid: 6507078

Auteurs

Rubens Paula Junior (RP)

Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil. rubensdpjunior@hotmail.com.

Nathália Martins Sonehara (NM)

Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.

Bruna Victorasso Jardim-Perassi (BV)

Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.

Akos Pal (A)

The Institute of Cancer Research, London, UK.

Yasmin Asad (Y)

The Institute of Cancer Research, London, UK.

Luiz Gustavo Almeida Chuffa (LG)

Universidade Do Estado de São Paulo, São Paulo, Brazil.

Roger Chammas (R)

Instituto Do Câncer Do Estado de São Paulo, São Paulo, Brazil.

Florence I Raynaud (FI)

The Institute of Cancer Research, London, UK.

Debora A P C Zuccari (DAPC)

Faculdade de Medicina de São José Do Rio Preto, São José do Rio Preto, Brazil.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH