Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 01 2022
19 01 2022
Historique:
received:
19
05
2021
accepted:
04
01
2022
entrez:
20
1
2022
pubmed:
21
1
2022
medline:
5
3
2022
Statut:
epublish
Résumé
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Identifiants
pubmed: 35046467
doi: 10.1038/s41598-022-04994-6
pii: 10.1038/s41598-022-04994-6
pmc: PMC8770691
doi:
Substances chimiques
Amino Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1008Informations de copyright
© 2022. The Author(s).
Références
Tomita, M. & Kami, K. Systems biology, metabolomics, and cancer metabolism. Science 336, 990 (2012).
pubmed: 22628644
doi: 10.1126/science.1223066
Halama, A. Metabolomics in cell culture–a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 15(564), 100–109 (2014).
doi: 10.1016/j.abb.2014.09.002
Fouad, Y. A. & Aanei, C. Revisiting the hallmarks of cancer. Am J Cancer Res. 7, 1016–1036 (2017).
pubmed: 28560055
pmcid: 5446472
Cao, M. D. et al. Metabolic characterization of triple negative breast cancer. BMC Cancer 14, 941 (2014).
pubmed: 25495193
pmcid: 4295321
doi: 10.1186/1471-2407-14-941
Zhang, J., Pavlova, N. N. & Thompson, C. B. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 36(10), 1302–1315 (2017).
pubmed: 28420743
pmcid: 5430235
doi: 10.15252/embj.201696151
DeBerardinis, R. J. & Thompson, C. B. Cellular metabolism and disease: what do metabolic outliers teach us?. Cell 148(6), 1132–1144 (2012).
pubmed: 22424225
pmcid: 3337773
doi: 10.1016/j.cell.2012.02.032
Loayza-Puch, F. & Agami, R. Monitoring amino acid deficiencies in cancer. Cell Cycle 15, 2229–2230 (2016).
pubmed: 27245302
pmcid: 5004689
doi: 10.1080/15384101.2016.1191256
Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).
pubmed: 28985563
pmcid: 5684706
doi: 10.1016/j.cell.2017.09.019
Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science. 358(6365), 941–946 (2017).
pubmed: 29025995
pmcid: 5748897
doi: 10.1126/science.aam9305
Feigin, R. D., Klainer, A. S. & Beisel, W. R. Circadian periodicity of blood amino-acids in adult men. Nature 215, 512–514 (1967).
pubmed: 6057913
doi: 10.1038/215512b0
Minami, Y. et al. Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A. 106, 9890–9895 (2009).
pubmed: 19487679
pmcid: 2689311
doi: 10.1073/pnas.0900617106
Ang, J. E. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int. 29, 868–881 (2012).
pubmed: 22823870
pmcid: 3433180
doi: 10.3109/07420528.2012.699122
Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. Proc Natl Acad Sci U S A. 109, 2625–2629 (2012).
pubmed: 22308371
pmcid: 3289302
doi: 10.1073/pnas.1114410109
Krishnaiah, S. Y. et al. Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab. 25, 1206 (2017).
pubmed: 28467936
doi: 10.1016/j.cmet.2017.04.023
Bailey, S. M., Udoh, U. S. & Young, M. E. Circadian regulation of metabolism. J Endocrinol. 222, R75–R96 (2014).
pubmed: 24928941
pmcid: 4109003
doi: 10.1530/JOE-14-0200
Johnston, J. D., Ordovás, J. M., Scheer, F. A. & Turek, F. W. Circadian rhythms, metabolism, and chrononutrition in rodents and humans. Adv Nutr. 7, 399–406 (2016).
pubmed: 26980824
pmcid: 4785478
doi: 10.3945/an.115.010777
Lin, R. et al. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Mol Cell. 68, 198–209 (2017).
pubmed: 28985504
doi: 10.1016/j.molcel.2017.09.008
Bass, J. & Takahashi, J. Circadian integration of metabolism and energetics. Science 330(6009), 1349–1354 (2010).
pubmed: 21127246
pmcid: 3756146
doi: 10.1126/science.1195027
Masri, S. & Sassone-Corsi, P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 24(12), 1795–1803 (2018).
pubmed: 30523327
pmcid: 6535395
doi: 10.1038/s41591-018-0271-8
Bi, X. & Henry, C. J. Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr Diabetes. 7, 249 (2017).
doi: 10.1038/nutd.2016.55
Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 20, 1193–1198 (2014).
pubmed: 25261994
pmcid: 4191991
doi: 10.1038/nm.3686
- Jardim-Perassi BV, Arbab AS, Ferreira LC, Borin TF, Varma NRS, Iskander ASM et al. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One. 2014. 9: e85311.
Lin, F. Altered circadian rhythms and breast cancer: from the human to the molecular level. Front Endocrinol (Lausanne). 9, 219 (2018).
pubmed: 29780357
pmcid: 5945923
doi: 10.3389/fendo.2018.00219
Tahara, Y. & Shibata, S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition. Free Radic Biol Med. 1(119), 129–138 (2018).
doi: 10.1016/j.freeradbiomed.2017.12.026
Li, H. et al. The landscape of cancer cell line metabolism. Nat Med. 25, 850–860 (2019).
pubmed: 31068703
pmcid: 6629041
doi: 10.1038/s41591-019-0404-8
Hojo, H. et al. Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget. 8(21), 34128–34140 (2017).
pubmed: 28388556
pmcid: 5470956
doi: 10.18632/oncotarget.16699
Masri, S. et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165(4), 896–909 (2016).
pubmed: 27153497
pmcid: 5373476
doi: 10.1016/j.cell.2016.04.039
Proenza, A. M., Oliver, J., Palou, A. & Roca, P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. J Nutr Biochem. 14, 133–138 (2003).
pubmed: 12742540
doi: 10.1016/S0955-2863(02)00225-5
Ros-Mazurczyk, M. et al. Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer screening - a pilot study. Acta Biochim Pol. 64, 513–518 (2017).
pubmed: 28803255
doi: 10.18388/abp.2017_1517
Vissers, Y. L. et al. Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency?. Am J Clin Nutr. 81, 1142–1146 (2005).
pubmed: 15883440
doi: 10.1093/ajcn/81.5.1142
Barnes, T. et al. Plasma amino acid profiles of breast cancer patients early in the trajectory of the disease differ from healthy comparison groups. Appl Physiol Nutr Metab. 39, 740–744 (2014).
pubmed: 24819038
doi: 10.1139/apnm-2013-0526
Poschke, I., Mao, Y., Kiessling, R. & Boniface, J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes. J Transl Med. 11, 290 (2013).
pubmed: 24237611
pmcid: 3835137
doi: 10.1186/1479-5876-11-290
Asiago, V. M. et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 70, 8309–8318 (2010).
pubmed: 20959483
pmcid: 2995269
doi: 10.1158/0008-5472.CAN-10-1319
Manig, F. et al. The why and how of amino acid analytics in cancer diagnostics and therapy. J Biotechnol. 242, 30–54 (2017).
pubmed: 27932276
doi: 10.1016/j.jbiotec.2016.12.001
Dang, C. V. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70, 859–862 (2010).
pubmed: 20086171
pmcid: 2818441
doi: 10.1158/0008-5472.CAN-09-3556
Liu, W., Hancock, C. N., Fischer, J. W., Harman, M. & Phang, J. M. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep. 5, 17206 (2015).
pubmed: 26598224
pmcid: 4657043
doi: 10.1038/srep17206
Paul, B., Saradalekshmi, K. R., Alex, A. M. & Banerjee, M. Circadian rhythm of homocysteine is hCLOCK genotype dependent. Mol Biol Rep. 41, 3597–3602 (2014).
pubmed: 24510388
doi: 10.1007/s11033-014-3223-5
Snyder, N. W., Mesaros, C. & Blair, I. A. Translational metabolomics in cancer research. Biomark Med. 9, 821–834 (2015).
pubmed: 26329905
doi: 10.2217/bmm.15.52
Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 8, 15267 (2017).
pubmed: 28492237
pmcid: 5437289
doi: 10.1038/ncomms15267
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).
pubmed: 21760589
pmcid: 3353325
doi: 10.1038/nature10350
Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).
pubmed: 22628656
pmcid: 3526189
doi: 10.1126/science.1218595
Bennegård, K., Lindmark, L., Edén, E., Svaninger, G. & Lundholm, K. Flux of amino acids across the leg in weight-losing cancer patients. Cancer Res. 44, 386–393 (1984).
pubmed: 6690052
Watanabe, A., Higashi, T., Sakata, T. & Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54, 1875–1882 (1984).
pubmed: 6090002
doi: 10.1002/1097-0142(19841101)54:9<1875::AID-CNCR2820540918>3.0.CO;2-O
Cala, M. P. et al. Multiplatform plasma fingerprinting in cancer cachexia: a pilot observational and translational study. J Cachexia Sarcopenia Muscle. 9(2), 348–357 (2018).
pubmed: 29464940
pmcid: 5879957
doi: 10.1002/jcsm.12270
Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).
pubmed: 2305266
doi: 10.1126/science.2305266
Cairns, R. A., Harris, I., McCracken, S. & Mak, T. W. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 76, 299–311 (2011).
pubmed: 22156302
doi: 10.1101/sqb.2011.76.012856
Hoffman, R. M., Stern, P. H., Coalson, D. W., Douglas Wallace, C. & Erbe, R. W. Altered Methionine Metabolism in Cancer Cells. Methods Mol Biol. 1866, 13–26 (2019).
pubmed: 30725404
doi: 10.1007/978-1-4939-8796-2_2
Melone, M. A. B. et al. The carnitine system and cancer metabolic plasticity. Cell Death Dis. 9, 228 (2018).
pubmed: 29445084
pmcid: 5833840
doi: 10.1038/s41419-018-0313-7
Scheerger, S. B. & Zempleni, J. Expression of oncogenes depends on biotin in human small cell lung cancer cells NCI-H69. Int J Vitam Nutr Res. 73(6), 461–467 (2003).
pubmed: 14743551
doi: 10.1024/0300-9831.73.6.461
de Assis, L. V. M. et al. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci. 19, 4 (2018).
doi: 10.3390/ijms19041065
de Assis, L. V. M., Moraes, M. N. & Castrucci, A. M. L. The molecular clock in the skin, its functionality, and how it is disrupted in cutaneous melanoma: a new pharmacological target?. Cell Mol Life Sci. 76(19), 3801–3826 (2019).
pubmed: 31222374
doi: 10.1007/s00018-019-03183-5
Verlande, A. & Masri, S. Circadian clocks and cancer: time-keeping governs cellular metabolism. Trends Endocrinol Metab. 7(30), 445–458 (2019).
doi: 10.1016/j.tem.2019.05.001
Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 7, 1464–1478 (2013).
doi: 10.1016/j.cell.2013.11.034
Eckel-Mahan, K. L. et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 109(14), 5541–6 (2012).
pubmed: 22431615
pmcid: 3325727
doi: 10.1073/pnas.1118726109
Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell. 158(3), 659–72 (2014).
pubmed: 25083875
pmcid: 5472354
doi: 10.1016/j.cell.2014.06.050
- Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, et al. Role of gut microbiota dysbiosis in breast cancer and novel approaches in prevention, diagnosis, and treatment. Cureus. 2021. 13(8): e17472.
Costa, D. A. et al. Human microbiota and breast cancer-is there any relevant link? A literature review and new horizons toward personalised medicine. Front Microbiol. 12, 584332 (2021).
pubmed: 33716996
pmcid: 7947609
doi: 10.3389/fmicb.2021.584332
Sampsell, K., Hao, D. & Reimer, R. A. The gut microbiota: a potential gateway to improved health outcomes in breast cancer treatment and survivorship. Int J Mol Sci. 21(23), 9239 (2020).
pmcid: 7731103
doi: 10.3390/ijms21239239
Kovács, T. et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep. 9(1), 1300 (2019).
pubmed: 30718646
pmcid: 6361949
doi: 10.1038/s41598-018-37664-7
Hullar, M. A. J., Burnett-Hartman, A. N. & Lampe, J. W. Gut microbes, diet, and cancer. Cancer Treat Res. 159, 377–399 (2014).
pubmed: 24114492
pmcid: 4121395
doi: 10.1007/978-3-642-38007-5_22
Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49(12), 2083–2090 (2017).
pubmed: 28932911
doi: 10.1007/s00726-017-2493-3
Vettore, L., Westbrook, R. L. & Tennant, D. A. New aspects of amino acid metabolism in cancer. Br J Cancer. 122(2), 150–156 (2020).
pubmed: 31819187
doi: 10.1038/s41416-019-0620-5
Lima, A. R. et al. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep. 8(1), 5539 (2018).
pubmed: 29615722
pmcid: 5882858
doi: 10.1038/s41598-018-23847-9
Lima, A. R. et al. Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine. Br J Cancer. 121(10), 857–868 (2019).
pubmed: 31588123
pmcid: 6889512
doi: 10.1038/s41416-019-0585-4
Alsaleh, M. et al. Characterization of the urinary metabolic profile of cholangiocarcinoma in a United Kingdom population. Hepat Med. 11, 47–67 (2019).
pubmed: 31118840
pmcid: 6507078