SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
28
12
2021
accepted:
19
01
2022
pubmed:
22
1
2022
medline:
1
4
2022
entrez:
21
1
2022
Statut:
ppublish
Résumé
The recent emergence of B.1.1.529, the Omicron variant
Identifiants
pubmed: 35062015
doi: 10.1038/s41586-022-04441-6
pii: 10.1038/s41586-022-04441-6
pmc: PMC8942849
doi:
Substances chimiques
ACE2 protein, human
EC 3.4.17.23
Angiotensin-Converting Enzyme 2
EC 3.4.17.23
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
687-692Subventions
Organisme : NIAID NIH HHS
ID : T32 AI007647
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : P51OD011132
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00017
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI151810
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00016
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK130425
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI129269
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI060699
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201400004C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : NIAID NIH HHS
ID : R56 AI147623
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93019C00051
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R56AI147623
Organisme : NIH HHS
ID : P51 OD011132
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201700041I
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
ID : R01DK130425
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : 75N93020F00001/A38
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R01 AI129269
Investigateurs
B Alburquerque
(B)
H Alshammary
(H)
A A Amoako
(AA)
S Aslam
(S)
R Banu
(R)
C Cognigni
(C)
M Espinoza-Moraga
(M)
K Farrugia
(K)
A van de Guchte
(A)
Z Khalil
(Z)
M Laporte
(M)
I Mena
(I)
A E Paniz-Mondolfi
(AE)
J Polanco
(J)
A Rooker
(A)
L A Sominsky
(LA)
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© 2022. The Author(s).
Références
Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. Nature 600, 197–199 (2021).
pubmed: 34857948
doi: 10.1038/d41586-021-03614-z
Torjesen, I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ 375, n2943 (2021).
pubmed: 34845008
doi: 10.1136/bmj.n2943
Kuiper, M. J. et al. But mouse, you are not alone: on some severe acute respiratory syndrome coronavirus 2 variants infecting mice. ILAR J. 12, ilab031 (2022).
Wei, C. et al. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J. Genet. Genomics 48, 1111–1121 (2021).
Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).
pubmed: 32967005
pmcid: 8136862
doi: 10.1038/s41586-020-2787-6
Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020).
pubmed: 32094589
doi: 10.1038/s41564-020-0688-y
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
pubmed: 32422645
doi: 10.1038/s41586-020-2349-y
Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 182, 73–84 (2020).
pubmed: 32425270
pmcid: 7231725
doi: 10.1016/j.cell.2020.05.025
Zost, S. J. et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26, 1422–1427 (2020).
pubmed: 32651581
pmcid: 8194108
doi: 10.1038/s41591-020-0998-x
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).
pubmed: 33045718
pmcid: 8092461
doi: 10.1038/s41586-020-2852-1
Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370, 950–957 (2020).
pubmed: 32972994
pmcid: 7857395
doi: 10.1126/science.abe3354
Rathe, J. A. et al. SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing. J. Infect. Dis. 223, 1120–1131 (2020).
pmcid: 7798987
doi: 10.1093/infdis/jiaa797
Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J. Virol. 94, e00127-20 (2020).
pubmed: 31996437
pmcid: 7081895
doi: 10.1128/JVI.00127-20
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315
doi: 10.1128/JVI.02012-06
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58 (2020).
pubmed: 32516571
pmcid: 7241398
doi: 10.1016/j.cell.2020.05.027
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612
pmcid: 7578095
doi: 10.1038/s41590-020-0778-2
Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753 (2020).
pubmed: 32553273
pmcid: 7284254
doi: 10.1016/j.cell.2020.06.011
Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743 (2020).
pubmed: 32643603
pmcid: 7284240
doi: 10.1016/j.cell.2020.06.010
Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020).
pubmed: 32380511
doi: 10.1038/s41586-020-2312-y
Sun, S. H. et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124–133 (2020).
pubmed: 32485164
pmcid: 7250783
doi: 10.1016/j.chom.2020.05.020
Winkler, E. S. et al. SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice. J. Virol. 96, e01511-21 (2021).
doi: 10.1128/JVI.01511-21
Rathnasinghe, R. et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. Preprint at https://doi.org/10.1101/2021.01.19.21249592 (2021).
Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).
pubmed: 32732280
pmcid: 7574913
doi: 10.1126/science.abc4730
Chen, R. E. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature 596, 103–108 (2021).
pubmed: 34153975
pmcid: 8349859
doi: 10.1038/s41586-021-03720-y
Kibler, K. V. et al. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085 (2020).
pubmed: 33031744
pmcid: 7510428
doi: 10.1016/j.cell.2020.09.050
Dinnon, K. H. III et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108
pmcid: 8034761
doi: 10.1038/s41586-020-2708-8
Wong, L.-Y. R. et al. Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19. Preprint at https://doi.org/10.1101/2021.04.20.440676 (2021).
Vanderheiden, A. et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio 12, e0274921 (2021).
pubmed: 34749524
doi: 10.1128/mBio.02749-21
Muruato, A. et al. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol. 19, e3001284 (2021).
pubmed: 34735434
pmcid: 8594810
doi: 10.1371/journal.pbio.3001284
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature https://doi.org/10.1038/s41586-021-04386-2 (2021).
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).
pubmed: 32408338
pmcid: 7394720
doi: 10.1038/s41586-020-2342-5
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934
pmcid: 7368255
doi: 10.1073/pnas.2009799117
Ying, B. et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2021).
doi: 10.1126/scitranslmed.abm3302
Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc. Natl Acad. Sci. USA 118, e2106535118 (2021).
pubmed: 34140350
pmcid: 8271735
doi: 10.1073/pnas.2106535118
Winkler, E. S. et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804–1820 (2021).
pubmed: 33691139
pmcid: 7879018
doi: 10.1016/j.cell.2021.02.026
Simpson, S. et al. Radiological Society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary Publication. J. Thoracic Imaging 35, 219–227 (2020).
doi: 10.1097/RTI.0000000000000524
Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
pubmed: 32826334
pmcid: 7486773
doi: 10.1073/pnas.2010146117
Gilliland, T. et al. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. Preprint at https://doi.org/10.1101/2021.07.26.453840 (2021).
Espenhain, L. et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2021.26.50.2101146 (2021).
Kupferschmidt, K. & Vogel, G. How bad is Omicron? Some clues are emerging. Science 374, 1304–1305 (2021).
pubmed: 34882443
doi: 10.1126/science.acx9782
Kenrie, P.Y. et al. SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo. Nature https://doi.org/10.1038/s41586-02200447906 (2021).
Abdelnabi, R. et al. The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Res. 198, 105253 (2022).
Yadav, P. et al. Isolation of SARS-CoV-2 B.1.1.28.2 (P2) variant and pathogenicity comparison with D614G variant in hamster model. J. Infect. Public Health 15, 164–171 (2021).
pubmed: 34959053
pmcid: 8690136
doi: 10.1016/j.jiph.2021.12.009
Ulrich, L. et al. Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature 602, 307–313 (2021).
Griffin, B. D. et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 12, 3612 (2021).
pubmed: 34127676
pmcid: 8203675
doi: 10.1038/s41467-021-23848-9
Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).
pubmed: 33166988
doi: 10.1038/s41586-020-2943-z
Mannar, D. et al. SARS-CoV-2 Omicron variant: ACE2 binding, cryo-EM structure of spike protein-ACE2 complex and antibody evasion. Science 20, ean7760 (2022).
McCallum, M. et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 25, eabn8652 (2022).
Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).
pubmed: 32404436
pmcid: 7285829
doi: 10.1126/sciimmunol.abc3582
Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).
pubmed: 32165541
pmcid: 7132130
doi: 10.1073/pnas.2002589117
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494
pmcid: 8058618
doi: 10.1038/s41591-021-01294-w
Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2020).
Gagne, M. et al. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 185, 113–130 (2021).
pubmed: 34921774
pmcid: 8639396
doi: 10.1016/j.cell.2021.12.002
Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nat. Immunol. 22, 1306–1315 (2021).
pubmed: 34417590
pmcid: 8488000
doi: 10.1038/s41590-021-01021-0
Li, Z. et al. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol. Reprod. 90, 93 (2014).
pubmed: 24671876
pmcid: 4076374
doi: 10.1095/biolreprod.113.116905
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945
doi: 10.1016/j.virol.2020.05.015
Vanderheiden, A. et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio 12, e0274921 (2021).
Jangra, S. et al. Sterilizing immunity against SARS-CoV-2 infection in mice by a single-shot and lipid amphiphile imidazoquinoline TLR7/8 agonist-adjuvanted recombinant spike protein vaccine. Angew. Chem. Int. Ed. 60, 9467–9473 (2021).
doi: 10.1002/anie.202015362
Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020).
pubmed: 32031583
pmcid: 7108203
doi: 10.1093/clinchem/hvaa029
Halfmann, P. et al. SARS-CoV-2 interference of influenza virus replication in Syrian hamsters. J. Infect. Dis. 225, 282–286 (2021).
pmcid: 8689717
doi: 10.1093/infdis/jiab587
Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295, 202–207 (2020).
pubmed: 32017661
doi: 10.1148/radiol.2020200230