SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
03 2022
Historique:
received: 28 12 2021
accepted: 19 01 2022
pubmed: 22 1 2022
medline: 1 4 2022
entrez: 21 1 2022
Statut: ppublish

Résumé

The recent emergence of B.1.1.529, the Omicron variant

Identifiants

pubmed: 35062015
doi: 10.1038/s41586-022-04441-6
pii: 10.1038/s41586-022-04441-6
pmc: PMC8942849
doi:

Substances chimiques

ACE2 protein, human EC 3.4.17.23
Angiotensin-Converting Enzyme 2 EC 3.4.17.23

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

687-692

Subventions

Organisme : NIAID NIH HHS
ID : T32 AI007647
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : P51OD011132
Organisme : NIAID NIH HHS
ID : HHSN272201400008C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00017
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI151810
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00016
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK130425
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI129269
Pays : United States
Organisme : NIAID NIH HHS
ID : P01 AI060699
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201400004C
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93021C00014
Pays : United States
Organisme : NIAID NIH HHS
ID : R56 AI147623
Pays : United States
Organisme : NIAID NIH HHS
ID : 75N93019C00051
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R56AI147623
Organisme : NIH HHS
ID : P51 OD011132
Pays : United States
Organisme : NIAID NIH HHS
ID : HHSN272201700041I
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI157155
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
ID : R01DK130425
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : 75N93020F00001/A38
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R01 AI129269

Investigateurs

B Alburquerque (B)
H Alshammary (H)
A A Amoako (AA)
S Aslam (S)
R Banu (R)
C Cognigni (C)
M Espinoza-Moraga (M)
K Farrugia (K)
A van de Guchte (A)
Z Khalil (Z)
M Laporte (M)
I Mena (I)
A E Paniz-Mondolfi (AE)
J Polanco (J)
A Rooker (A)
L A Sominsky (LA)

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© 2022. The Author(s).

Références

Callaway, E. & Ledford, H. How bad is Omicron? What scientists know so far. Nature 600, 197–199 (2021).
pubmed: 34857948 doi: 10.1038/d41586-021-03614-z
Torjesen, I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ 375, n2943 (2021).
pubmed: 34845008 doi: 10.1136/bmj.n2943
Kuiper, M. J. et al. But mouse, you are not alone: on some severe acute respiratory syndrome coronavirus 2 variants infecting mice. ILAR J. 12, ilab031 (2022).
Wei, C. et al. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J. Genet. Genomics 48, 1111–1121 (2021).
Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515 (2020).
pubmed: 32967005 pmcid: 8136862 doi: 10.1038/s41586-020-2787-6
Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020).
pubmed: 32094589 doi: 10.1038/s41564-020-0688-y
Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).
pubmed: 32422645 doi: 10.1038/s41586-020-2349-y
Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ B cells. Cell 182, 73–84 (2020).
pubmed: 32425270 pmcid: 7231725 doi: 10.1016/j.cell.2020.05.025
Zost, S. J. et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26, 1422–1427 (2020).
pubmed: 32651581 pmcid: 8194108 doi: 10.1038/s41591-020-0998-x
Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).
pubmed: 33045718 pmcid: 8092461 doi: 10.1038/s41586-020-2852-1
Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370, 950–957 (2020).
pubmed: 32972994 pmcid: 7857395 doi: 10.1126/science.abe3354
Rathe, J. A. et al. SARS-CoV-2 serologic assays in control and unknown populations demonstrate the necessity of virus neutralization testing. J. Infect. Dis. 223, 1120–1131 (2020).
pmcid: 7798987 doi: 10.1093/infdis/jiaa797
Wan, Y., Shang, J., Graham, R., Baric, R. S. & Li, F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J. Virol. 94, e00127-20 (2020).
pubmed: 31996437 pmcid: 7081895 doi: 10.1128/JVI.00127-20
McCray, P. B. Jr et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821 (2007).
pubmed: 17079315 doi: 10.1128/JVI.02012-06
Jiang, R. D. et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58 (2020).
pubmed: 32516571 pmcid: 7241398 doi: 10.1016/j.cell.2020.05.027
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335 (2020).
pubmed: 32839612 pmcid: 7578095 doi: 10.1038/s41590-020-0778-2
Hassan, A. O. et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753 (2020).
pubmed: 32553273 pmcid: 7284254 doi: 10.1016/j.cell.2020.06.011
Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743 (2020).
pubmed: 32643603 pmcid: 7284240 doi: 10.1016/j.cell.2020.06.010
Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020).
pubmed: 32380511 doi: 10.1038/s41586-020-2312-y
Sun, S. H. et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124–133 (2020).
pubmed: 32485164 pmcid: 7250783 doi: 10.1016/j.chom.2020.05.020
Winkler, E. S. et al. SARS-CoV-2 causes lung infection without severe disease in human ACE2 knock-in mice. J. Virol. 96, e01511-21 (2021).
doi: 10.1128/JVI.01511-21
Rathnasinghe, R. et al. The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. Preprint at https://doi.org/10.1101/2021.01.19.21249592 (2021).
Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).
pubmed: 32732280 pmcid: 7574913 doi: 10.1126/science.abc4730
Chen, R. E. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature 596, 103–108 (2021).
pubmed: 34153975 pmcid: 8349859 doi: 10.1038/s41586-021-03720-y
Kibler, K. V. et al. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085 (2020).
pubmed: 33031744 pmcid: 7510428 doi: 10.1016/j.cell.2020.09.050
Dinnon, K. H. III et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560–566 (2020).
pubmed: 32854108 pmcid: 8034761 doi: 10.1038/s41586-020-2708-8
Wong, L.-Y. R. et al. Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19. Preprint at https://doi.org/10.1101/2021.04.20.440676 (2021).
Vanderheiden, A. et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio 12, e0274921 (2021).
pubmed: 34749524 doi: 10.1128/mBio.02749-21
Muruato, A. et al. Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biol. 19, e3001284 (2021).
pubmed: 34735434 pmcid: 8594810 doi: 10.1371/journal.pbio.3001284
Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature https://doi.org/10.1038/s41586-021-04386-2 (2021).
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838 (2020).
pubmed: 32408338 pmcid: 7394720 doi: 10.1038/s41586-020-2342-5
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).
pubmed: 32571934 pmcid: 7368255 doi: 10.1073/pnas.2009799117
Ying, B. et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 14, eabm3302 (2021).
doi: 10.1126/scitranslmed.abm3302
Imai, M. et al. Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proc. Natl Acad. Sci. USA 118, e2106535118 (2021).
pubmed: 34140350 pmcid: 8271735 doi: 10.1073/pnas.2106535118
Winkler, E. S. et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804–1820 (2021).
pubmed: 33691139 pmcid: 7879018 doi: 10.1016/j.cell.2021.02.026
Simpson, S. et al. Radiological Society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - Secondary Publication. J. Thoracic Imaging 35, 219–227 (2020).
doi: 10.1097/RTI.0000000000000524
Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).
pubmed: 32826334 pmcid: 7486773 doi: 10.1073/pnas.2010146117
Gilliland, T. et al. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. Preprint at https://doi.org/10.1101/2021.07.26.453840 (2021).
Espenhain, L. et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2021.26.50.2101146 (2021).
Kupferschmidt, K. & Vogel, G. How bad is Omicron? Some clues are emerging. Science 374, 1304–1305 (2021).
pubmed: 34882443 doi: 10.1126/science.acx9782
Kenrie, P.Y. et al. SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo. Nature https://doi.org/10.1038/s41586-02200447906 (2021).
Abdelnabi, R. et al. The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Res. 198, 105253 (2022).
Yadav, P. et al. Isolation of SARS-CoV-2 B.1.1.28.2 (P2) variant and pathogenicity comparison with D614G variant in hamster model. J. Infect. Public Health 15, 164–171 (2021).
pubmed: 34959053 pmcid: 8690136 doi: 10.1016/j.jiph.2021.12.009
Ulrich, L. et al. Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature 602, 307–313 (2021).
Griffin, B. D. et al. SARS-CoV-2 infection and transmission in the North American deer mouse. Nat. Commun. 12, 3612 (2021).
pubmed: 34127676 pmcid: 8203675 doi: 10.1038/s41467-021-23848-9
Zheng, J. et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 589, 603–607 (2021).
pubmed: 33166988 doi: 10.1038/s41586-020-2943-z
Mannar, D. et al. SARS-CoV-2 Omicron variant: ACE2 binding, cryo-EM structure of spike protein-ACE2 complex and antibody evasion. Science 20, ean7760 (2022).
McCallum, M. et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 25, eabn8652 (2022).
Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).
pubmed: 32404436 pmcid: 7285829 doi: 10.1126/sciimmunol.abc3582
Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl Acad. Sci. USA 117, 7001–7003 (2020).
pubmed: 32165541 pmcid: 7132130 doi: 10.1073/pnas.2002589117
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).
pubmed: 33664494 pmcid: 8058618 doi: 10.1038/s41591-021-01294-w
Plante, J. A. et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121 (2020).
Gagne, M. et al. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 185, 113–130 (2021).
pubmed: 34921774 pmcid: 8639396 doi: 10.1016/j.cell.2021.12.002
Corbett, K. S. et al. mRNA-1273 protects against SARS-CoV-2 beta infection in nonhuman primates. Nat. Immunol. 22, 1306–1315 (2021).
pubmed: 34417590 pmcid: 8488000 doi: 10.1038/s41590-021-01021-0
Li, Z. et al. Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biol. Reprod. 90, 93 (2014).
pubmed: 24671876 pmcid: 4076374 doi: 10.1095/biolreprod.113.116905
Case, J. B., Bailey, A. L., Kim, A. S., Chen, R. E. & Diamond, M. S. Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology 548, 39–48 (2020).
pubmed: 32838945 doi: 10.1016/j.virol.2020.05.015
Vanderheiden, A. et al. CCR2 signaling restricts SARS-CoV-2 infection. mBio 12, e0274921 (2021).
Jangra, S. et al. Sterilizing immunity against SARS-CoV-2 infection in mice by a single-shot and lipid amphiphile imidazoquinoline TLR7/8 agonist-adjuvanted recombinant spike protein vaccine. Angew. Chem. Int. Ed. 60, 9467–9473 (2021).
doi: 10.1002/anie.202015362
Chu, D. K. W. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66, 549–555 (2020).
pubmed: 32031583 pmcid: 7108203 doi: 10.1093/clinchem/hvaa029
Halfmann, P. et al. SARS-CoV-2 interference of influenza virus replication in Syrian hamsters. J. Infect. Dis. 225, 282–286 (2021).
pmcid: 8689717 doi: 10.1093/infdis/jiab587
Chung, M. et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295, 202–207 (2020).
pubmed: 32017661 doi: 10.1148/radiol.2020200230

Auteurs

Peter J Halfmann (PJ)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Shun Iida (S)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Kiyoko Iwatsuki-Horimoto (K)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Tadashi Maemura (T)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Maki Kiso (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Suzanne M Scheaffer (SM)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Tamarand L Darling (TL)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Astha Joshi (A)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Samantha Loeber (S)

Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Gagandeep Singh (G)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Stephanie L Foster (SL)

Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.

Baoling Ying (B)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

James Brett Case (JB)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Zhenlu Chong (Z)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Bradley Whitener (B)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Juan Moliva (J)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Katharine Floyd (K)

Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.

Michiko Ujie (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Noriko Nakajima (N)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Mutsumi Ito (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Ryan Wright (R)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.

Ryuta Uraki (R)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Prajakta Warang (P)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Matthew Gagne (M)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Rong Li (R)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Yuko Sakai-Tagawa (Y)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.

Yanan Liu (Y)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Deanna Larson (D)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Jorge E Osorio (JE)

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
Colombia/Wisconsin One-Health Consortium and One-Health Genomic Laboratory, Universidad Nacional de Colombia, Medellín, Colombia.

Juan P Hernandez-Ortiz (JP)

Colombia/Wisconsin One-Health Consortium and One-Health Genomic Laboratory, Universidad Nacional de Colombia, Medellín, Colombia.

Amy R Henry (AR)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Karl Ciuoderis (K)

Colombia/Wisconsin One-Health Consortium and One-Health Genomic Laboratory, Universidad Nacional de Colombia, Medellín, Colombia.

Kelsey R Florek (KR)

Wisconsin State Laboratory of Hygiene, Madison, WI, USA.

Mit Patel (M)

Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.

Abby Odle (A)

Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.

Lok-Yin Roy Wong (LR)

Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.

Allen C Bateman (AC)

Wisconsin State Laboratory of Hygiene, Madison, WI, USA.

Zhongde Wang (Z)

Department of Animal Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA.

Venkata-Viswanadh Edara (VV)

Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.

Zhenlu Chong (Z)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

John Franks (J)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Trushar Jeevan (T)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Thomas Fabrizio (T)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Jennifer DeBeauchamp (J)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Lisa Kercher (L)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Patrick Seiler (P)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Ana Silvia Gonzalez-Reiche (AS)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Emilia Mia Sordillo (EM)

Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Lauren A Chang (LA)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Harm van Bakel (H)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Viviana Simon (V)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Daniel C Douek (DC)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Nancy J Sullivan (NJ)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Larissa B Thackray (LB)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Hiroshi Ueki (H)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Seiya Yamayoshi (S)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Masaki Imai (M)

Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.

Stanley Perlman (S)

Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.

Richard J Webby (RJ)

Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.

Robert A Seder (RA)

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Mehul S Suthar (MS)

Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.

Adolfo García-Sastre (A)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Michael Schotsaert (M)

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Tadaki Suzuki (T)

Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.

Adrianus C M Boon (ACM)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA. jboon@wustl.edu.
Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA. jboon@wustl.edu.
Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA. jboon@wustl.edu.

Michael S Diamond (MS)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA. mdiamond@wustl.edu.
Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA. mdiamond@wustl.edu.
Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA. mdiamond@wustl.edu.
The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA. mdiamond@wustl.edu.

Yoshihiro Kawaoka (Y)

Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA. yoshihiro.kawaoka@wisc.edu.
Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. yoshihiro.kawaoka@wisc.edu.
The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan. yoshihiro.kawaoka@wisc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH