Fungal fruit body assemblages are tougher in harsh microclimates.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 01 2022
31 01 2022
Historique:
received:
03
09
2021
accepted:
13
01
2022
entrez:
1
2
2022
pubmed:
2
2
2022
medline:
4
3
2022
Statut:
epublish
Résumé
Forest species are affected by macroclimate, however, the microclimatic variability can be more extreme and change through climate change. Fungal fruiting community composition was affected by microclimatic differences. Here we ask whether differences in the fruiting community can be explained by morphological traits of the fruit body, which may help endure harsh conditions. We used a dead wood experiment and macrofungal fruit body size, color, and toughness. We exposed logs of two host tree species under closed and experimentally opened forest canopies in a random-block design for four years and identified all visible fruit bodies of two fungal lineages (Basidio- and Ascomycota). We found a consistently higher proportion of tough-fleshed species in harsher microclimates under open canopies. Although significant, responses of community fruit body size and color lightness were inconsistent across lineages. We suggest the toughness-protection hypothesis, stating that tough-fleshed fruit bodies protect from microclimatic extremes by reducing dehydration. Our study suggests that the predicted increase of microclimatic harshness with climate change will likely decrease the presence of soft-fleshed fruit bodies. Whether harsh microclimates also affect the mycelium of macrofungi with different fruit body morphology would complement our findings and increase predictability under climate change.
Identifiants
pubmed: 35102234
doi: 10.1038/s41598-022-05715-9
pii: 10.1038/s41598-022-05715-9
pmc: PMC8803873
doi:
Banques de données
Dryad
['10.5061/dryad.wh70rxwnx']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1633Informations de copyright
© 2022. The Author(s).
Références
Nat Commun. 2014 May 27;5:3874
pubmed: 24866819
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32528-32534
pubmed: 33257574
Oecologia. 2016 Apr;180(4):923-31
pubmed: 26796410
Science. 2020 May 15;368(6492):772-775
pubmed: 32409476
Nat Ecol Evol. 2019 May;3(5):744-749
pubmed: 30936433
Nat Commun. 2018 Nov 26;9(1):4978
pubmed: 30478255
Fungal Biol Rev. 2017 Mar;31(2):99-112
pubmed: 31649746
Ecol Evol. 2021 Jul 05;11(15):10538-10546
pubmed: 34367595
Appl Microbiol Biotechnol. 2000 Aug;54(2):141-52
pubmed: 10968625
Evolution. 1949 Sep;3(3):195-211
pubmed: 18138377
New Phytol. 2009;182(3):565-588
pubmed: 19434804
Microbiol Spectr. 2017 Jul;5(4):
pubmed: 28820115
Glob Chang Biol. 2019 Nov;25(11):3781-3792
pubmed: 31436853
Ecol Lett. 2019 Jan;22(1):170-180
pubmed: 30463104
Ecol Lett. 2021 Apr;24(4):658-667
pubmed: 33565191
Evolution. 2011 May;65(5):1305-22
pubmed: 21166793
Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12002-6
pubmed: 9342352
Science. 2016 Sep 9;353(6304):
pubmed: 27609898
J Evol Biol. 2014 Dec;27(12):2820-8
pubmed: 25387908
Trends Ecol Evol. 2011 Jun;26(6):285-91
pubmed: 21470708
J Anim Ecol. 2020 Feb;89(2):347-359
pubmed: 31637702
Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576
pubmed: 34536103
Nat Commun. 2019 Jun 28;10(1):2890
pubmed: 31253790
Curr Biol. 2018 Aug 20;28(16):2657-2664.e3
pubmed: 30078567
Glob Chang Biol. 2017 Dec;23(12):5358-5371
pubmed: 28675600
FEMS Microbiol Rev. 2017 Mar 1;41(2):109-130
pubmed: 27856492
Trends Ecol Evol. 2006 Apr;21(4):178-85
pubmed: 16701083
Ecol Evol. 2016 Jan 09;6(2):582-92
pubmed: 26843941
Proc Biol Sci. 2002 Oct 7;269(1504):1963-9
pubmed: 12396494
Nat Clim Chang. 2017 Jun;7:395-402
pubmed: 28861124