In vivo safety study using radiation at wavelengths and dosages relevant to intravascular imaging.
imaging
in vivo
intravascular
laser
photoacoustics
safety
Journal
Journal of biomedical optics
ISSN: 1560-2281
Titre abrégé: J Biomed Opt
Pays: United States
ID NLM: 9605853
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
received:
08
08
2021
accepted:
05
01
2022
entrez:
1
2
2022
pubmed:
2
2
2022
medline:
15
3
2022
Statut:
ppublish
Résumé
Intravascular photoacoustic (IVPA) imaging can identify native lipid in atherosclerotic plaques in vivo. However, the large number of laser pulses required to produce 3D images is a safety concern that has not been fully addressed. We aim to evaluate if irradiation at wavelengths and dosages relevant to IVPA imaging causes target vessel damage. We irradiate the carotid artery of swine at one of several energy dosages using radiation at 1064 or 1720 nm and use histological evaluation by a pathologist to identify dose-dependent damage. Media necrosis was the only dose-dependent form of injury. Damage was present at a cumulative fluence of 50 J / cm2 when using 1720 nm light. Damage was more equivocally identified at 700 J / cm2 using 1064 nm. In prior work, IVPA imaging of native lipid in swine has been successfully conducted below the damage thresholds identified. This indicates that it will be possible to use IVPA imaging in a clinical setting without damaging vessel tissue. Future work should determine if irradiation causes an increase in blood thrombogenicity and confirm whether damaged tissue will heal over longer time points.
Identifiants
pubmed: 35102728
pii: JBO-210251R
doi: 10.1117/1.JBO.27.1.016003
pmc: PMC8802906
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL124417
Pays : United States
Références
J Biomed Opt. 2014 Feb;19(2):026006
pubmed: 24522806
Photonics. 2021 Jul;8(7):
pubmed: 35252433
Biomed Opt Express. 2017 Jan 18;8(2):943-953
pubmed: 28270995
Lancet. 2019 Nov 2;394(10209):1629-1637
pubmed: 31570255
Opt Express. 2020 Jun 22;28(13):19255-19269
pubmed: 32672206
J Biomed Opt. 2017 Oct;22(10):1-12
pubmed: 29076309
IEEE J Quantum Electron. 2010 Jun 3;16(3):588-599
pubmed: 21359138
Biomed Opt Express. 2021 Mar 09;12(4):1934-1946
pubmed: 33996208
Interv Cardiol. 2016 Oct;11(2):120-123
pubmed: 29588718
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):978-86
pubmed: 17523562
Appl Opt. 1989 Oct 15;28(20):4286-92
pubmed: 20555864
Appl Opt. 1973 Mar 1;12(3):555-63
pubmed: 20125343
Rev Sci Instrum. 2010 Jan;81(1):014901
pubmed: 20113121
Opt Lett. 2011 Mar 1;36(5):597-9
pubmed: 21368919
Lasers Surg Med. 2018 Oct 10;:
pubmed: 30302770
Phys Med Biol. 2013 Jun 7;58(11):R37-61
pubmed: 23666068
J Cardiovasc Transl Res. 2019 Jun;12(3):211-220
pubmed: 30488332
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):141-149
pubmed: 28092507
EuroIntervention. 2019 Aug 29;15(5):452-456
pubmed: 31113762
Opt Express. 2019 Apr 29;27(9):12832-12840
pubmed: 31052818
Biomed Opt Express. 2020 Oct 27;11(11):6721-6731
pubmed: 33282520
Ultrasound Med Biol. 2016 Aug;42(8):2017-25
pubmed: 27181689
Phys Med Biol. 2018 Nov 07;63(22):22TR01
pubmed: 30403195
Opt Express. 2008 Mar 3;16(5):3362-7
pubmed: 18542427
Opt Express. 2015 Apr 6;23(7):9130-6
pubmed: 25968747
J Biomed Opt. 2012 Oct;17(10):106016
pubmed: 23224013