Relationship between astrocyte reactivity, using novel
Alzheimer Disease
/ metabolism
Amyloid
/ metabolism
Amyloid beta-Peptides
/ metabolism
Astrocytes
/ metabolism
Brain
/ metabolism
Fluorodeoxyglucose F18
/ metabolism
Glucose
/ metabolism
Gray Matter
/ metabolism
Humans
Imidazoles
Indoles
Magnetic Resonance Imaging
/ methods
Positron-Emission Tomography
/ methods
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
04 2022
04 2022
Historique:
received:
25
06
2021
accepted:
23
12
2021
revised:
10
12
2021
pubmed:
8
2
2022
medline:
26
5
2022
entrez:
7
2
2022
Statut:
ppublish
Résumé
Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer
Identifiants
pubmed: 35125495
doi: 10.1038/s41380-021-01429-y
pii: 10.1038/s41380-021-01429-y
pmc: PMC9126819
doi:
Substances chimiques
2-(4,5-dihydro-1H-imidazol-2-yl)-1-methyl-1H-indole
0
Amyloid
0
Amyloid beta-Peptides
0
Imidazoles
0
Indoles
0
Fluorodeoxyglucose F18
0Z5B2CJX4D
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2019-2029Subventions
Organisme : Medical Research Council
ID : G84/6523
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s).
Références
Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct. 2017;222:2017–29.
pubmed: 28280934
pmcid: 5504258
doi: 10.1007/s00429-017-1383-5
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.
pubmed: 33589835
pmcid: 8007081
doi: 10.1038/s41593-020-00783-4
Ries M, Sastre M. Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci. 2016;8:160.
pubmed: 27458370
pmcid: 4932097
doi: 10.3389/fnagi.2016.00160
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer’s Disease. Neurotherapeutics 2010;7:399–412.
pubmed: 20880504
pmcid: 5084302
doi: 10.1016/j.nurt.2010.05.017
Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28:138–45.
pubmed: 17276138
doi: 10.1016/j.it.2007.01.005
Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Neurotherapeutics 2019;471:1247–61.
Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol Neurodegeneration. 2019;14:21.
doi: 10.1186/s13024-019-0325-5
Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI, et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20:393–5.
pubmed: 28135241
pmcid: 5378483
doi: 10.1038/nn.4492
Vilaplana E, Rodriguez-Vieitez E, Ferreira D, Montal V, Almkvist O, Wall A, et al. Cortical microstructural correlates of astrocytosis in autosomal-dominant Alzheimer disease. Neurology 2020;94:e2026–36.
pubmed: 32291295
pmcid: 7282881
doi: 10.1212/WNL.0000000000009405
Diniz LP, Tortelli V, Matias I, Morgado J, Araujo APB, Melo HM, et al. Astrocyte transforming growth factor beta 1 protects synapses against Aβ oligomers in Alzheimer’s disease model. J Neurosci. 2017;37:6797–809.
pubmed: 28607171
doi: 10.1523/JNEUROSCI.3351-16.2017
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on Astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14:724–38.
pubmed: 22152301
doi: 10.1016/j.cmet.2011.08.016
Regunathan S, Feinstein DL, Reis DJ. Expression of non‐adrenergic imidazoline sites in rat cerebral cortical astrocytes. J Neurosci Res. 1993;34:681–8.
pubmed: 8315666
doi: 10.1002/jnr.490340611
Venkataraman AV, Keat N, Myers JF, Turton S, Mick I, Gunn RN, et al. First evaluation of PET-based human biodistribution and radiation dosimetry of 11C-BU99008, a tracer for imaging the imidazoline2 binding site. EJNMMI Res. 2018;8:71.
pubmed: 30062395
pmcid: 6066589
doi: 10.1186/s13550-018-0429-x
Tyacke RJ, Myers JFM, Venkataraman A, Mick I, Turton S, Passchier J, et al. Evaluation of 11C-BU99008, a PET Ligand for the Imidazoline2 binding site in human brain. J Nucl Med. 2018;59:1597–602.
pubmed: 29523627
doi: 10.2967/jnumed.118.208009
Tyacke RJ, Fisher A, Robinson ESJ, Grundt P, Turner EM, Husbands SM, et al. Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, BU99008 (2-(4,5-Dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline 2 binding site. Synapse 2012;66:542–51.
pubmed: 22290740
doi: 10.1002/syn.21541
Parker CA, Nabulsi N, Holden D, Lin SF, Cass T, Labaree D, et al. Evaluation of 11C-BU99008, a PET Ligand for the Imidazoline 2 Binding Sites in Rhesus Brain. J Nucl Med. 2014;55:838–44.
pubmed: 24711648
doi: 10.2967/jnumed.113.131854
Kealey S, Turner EM, Husbands SM, Salinas CA, Jakobsen S, Tyacke RJ, et al. Imaging imidazoline-I2 binding sites in porcine brain using 11C-BU99008. J Nucl Med. 2013;54:139–44.
pubmed: 23223380
doi: 10.2967/jnumed.112.108258
Kawamura K, Shimoda Y, Yui J, Zhang Y, Yamasaki T, Wakizaka H, et al. A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus. Nucl Med Biol. 2017;45:1–7.
pubmed: 27835825
doi: 10.1016/j.nucmedbio.2016.10.005
Calsolaro V, Matthews P, Donat C, Livingston N, Femminella G, Silva Guedes S, et al. Astrocyte reactivity with late onset cognitive impairment assessed in vivo using 11C-BU99008 PET and its relationship with amyloid load. Mol Psychiatry. 2021; (Online ahead of print) https://doi.org/10.1038/s41380-021-01193-z .
Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J, et al. Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson’s disease: an in vivo 11C-BU99008 PET study. Brain 2019;142:3116–28.
pubmed: 31504212
doi: 10.1093/brain/awz260
Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, et al. Evidence for astrocytosis in prodromal alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46.
pubmed: 22213821
doi: 10.2967/jnumed.110.087031
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer’s Disease. Trends Mol Med. 2019;25:77–95.
pubmed: 30611668
doi: 10.1016/j.molmed.2018.11.006
Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, et al. Astrocyte Biomarkers in Alzheimer Disease: a systematic review and meta-analysis. Neurology. 2021; (Online ahead of print) https://doi.org/10.1212/WNL.0000000000012109 .
Kumar A, Koistinen NA, Malarte ML, Nennesmo I, Ingelsson M, Ghetti B, et al. Astroglial tracer BU99008 detects multiple binding sites in Alzheimer’s disease brain. Mol Psychiatry. 2021; (Online ahead of print) https://doi.org/10.1038/s41380-021-01101-5 .
Bullich S, Seibyl J, Catafau AM, Jovalekic A, Koglin N, Barthel H, et al. Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment. NeuroImage: Clin. 2017;15:325–32.
doi: 10.1016/j.nicl.2017.04.025
Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007;38:95–113.
pubmed: 17761438
doi: 10.1016/j.neuroimage.2007.07.007
Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19:224–47.
pubmed: 12874777
pmcid: 6871794
doi: 10.1002/hbm.10123
Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–59.
pubmed: 23073343
doi: 10.1088/0031-9155/57/21/R119
Aston JA, Cunningham VJ, Asselin MC, Hammers A, Evans AC, Gunn RN. Positron emission tomography partial volume correction: estimation and algorithms. J Cereb Blood Flow Metab. 2002;22:1019–34.
pubmed: 12172388
doi: 10.1097/00004647-200208000-00014
Minhas DS, Price JC, Laymon CM, Becker CR, Klunk WE, Tudorascu DL, et al. Impact of partial volume correction on the regional correspondence between in vivo [C-11]PiB PET and postmortem measures of Abeta load.Neuroimage Clin.2018;19:182–9.
pubmed: 30023168
pmcid: 6050460
doi: 10.1016/j.nicl.2018.04.007
Seo SW, Ayakta N, Grinberg LT, Villeneuve S, Lehmann M, Reed B, et al. Regional correlations between [(11)C]PIB PET and post-mortem burden of amyloid-beta pathology in a diverse neuropathological cohort. Neuroimage Clin. 2017;13:130–7.
pubmed: 27981028
doi: 10.1016/j.nicl.2016.11.008
Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, et al. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage 2008;40:672–84.
pubmed: 18234511
doi: 10.1016/j.neuroimage.2007.11.034
Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S, et al. Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. NeuroImage 2007;34:137–43.
pubmed: 17070709
doi: 10.1016/j.neuroimage.2006.09.011
Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res. 2003;971:197–209.
pubmed: 12706236
doi: 10.1016/S0006-8993(03)02361-8
Santillo AF, Gambini JP, Lannfelt L, Långström B, Ulla-Marja L, Kilander L, et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging. 2011;38:2202–8.
pubmed: 21853308
doi: 10.1007/s00259-011-1895-9
Ruiz J, Martín I, Callado LF, Meana JJ, Barturen F, García-Sevilla JA. Non-adrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer’s disease. Neurosci Lett. 1993;160:109–12.
pubmed: 7902542
doi: 10.1016/0304-3940(93)90925-B
Li JX. Imidazoline I2 receptors: an update. Pharm Ther. 2017;178:48–56.
doi: 10.1016/j.pharmthera.2017.03.009
Sastre M, Garcia‐Sevilla JA. Opposite Age‐Dependent Changes of α2A‐Adrenoceptors and Nonadrenoceptor [3H]Idazoxan Binding Sites (I2‐Imidazoline Sites) in the Human Brain: Strong Correlation of I2 with Monoamine Oxidase‐B Sites. J Neurochem. 1993;61:881–9.
pubmed: 8395564
doi: 10.1111/j.1471-4159.1993.tb03599.x
García-Sevilla JA, Escribá PV, Walzer C, Bouras C, Guimón J. Imidazoline receptor proteins in brains of patients with Alzheimer’s disease. Neurosci Lett. 1998;2:95–98.
doi: 10.1016/S0304-3940(98)00265-1
Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions. Neuron 2017;96:697–708.
pubmed: 29096081
pmcid: 5687890
doi: 10.1016/j.neuron.2017.09.056
Wang W, Hou TT, Jia LF, Wu QQ, Quan MN, Jia JP. Toxic amyloid-beta oligomers induced self-replication in astrocytes triggering neuronal injury. EBioMedicine 2019;42:174–87.
pubmed: 30926423
pmcid: 6491655
doi: 10.1016/j.ebiom.2019.03.049
Narayan P, Holmstrom KM, Kim DH, Whitcomb DJ, Wilson MR, St George-Hyslop P, et al. Rare individual amyloid-beta oligomers act on astrocytes to initiate neuronal damage. Biochemistry 2014;53:2442–53.
pubmed: 24717093
doi: 10.1021/bi401606f
Scholl M, Carter SF, Westman E, Rodriguez-Vieitez E, Almkvist O, Thordardottir S, et al. Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci Rep. 2015;5:16404.
pubmed: 26553227
pmcid: 4639762
doi: 10.1038/srep16404
Zhang X, Fu Z, Meng L, He M, Zhang Z. The Early Events That Initiate beta-Amyloid Aggregation in Alzheimer’s Disease. Front Aging Neurosci. 2018;10:359.
pubmed: 30542277
pmcid: 6277872
doi: 10.3389/fnagi.2018.00359
Pereira JB, Janelidze S, Smith R, Mattsson-Carlgren N, Palmqvist S, Teunissen CE, et al. Plasma GFAP is an early marker of amyloid-beta but not tau pathology in Alzheimer’s disease. Brain. 2021; (Online ahead of print) https://doi.org/10.1093/brain/awab223 .
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7:170228.
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.
pubmed: 22553043
pmcid: 3480225
doi: 10.1523/JNEUROSCI.6221-11.2012
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017;541:481–7.
pubmed: 28099414
pmcid: 5404890
doi: 10.1038/nature21029
Olsen M, Aguilar X, Sehlin D, Fang XT, Antoni G, Erlandsson A, et al. Astroglial Responses to Amyloid-Beta Progression in a Mouse Model of Alzheimer’s Disease. Mol Imaging Biol. 2018;20:605–14.
pubmed: 29297157
doi: 10.1007/s11307-017-1153-z
Smale G, Nichols NR, Brady DR, Finch CE, Horton WE. Evidence for Apoptotic Cell Death in Alzheimer’s Disease. Exp Neurol. 1995;133:225–30.
pubmed: 7544290
doi: 10.1006/exnr.1995.1025
Garaschuk O, Verkhratsky A. GABAergic astrocytes in Alzheimer’s disease. Aging 2019;11:1602–4.
pubmed: 30877782
pmcid: 6461167
doi: 10.18632/aging.101870
Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 2016;139:922–36.
pubmed: 26813969
pmcid: 4766380
doi: 10.1093/brain/awv404
Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C, et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging. 2015;42:1119–32.
pubmed: 25893384
pmcid: 4424277
doi: 10.1007/s00259-015-3047-0
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;427:10.