Purkinje network and myocardial substrate at the onset of human ventricular fibrillation: implications for catheter ablation.
Ablation
Brugada syndrome
Cardiomyopathy
Purkinje system
Sudden cardiac death
Ventricular fibrillation
Journal
European heart journal
ISSN: 1522-9645
Titre abrégé: Eur Heart J
Pays: England
ID NLM: 8006263
Informations de publication
Date de publication:
21 Mar 2022
21 Mar 2022
Historique:
received:
26
05
2021
revised:
25
10
2021
accepted:
16
12
2021
pubmed:
9
2
2022
medline:
30
3
2022
entrez:
8
2
2022
Statut:
ppublish
Résumé
Mapping data of human ventricular fibrillation (VF) are limited. We performed detailed mapping of the activities underlying the onset of VF and targeted ablation in patients with structural cardiac abnormalities. We evaluated 54 patients (50 ± 16 years) with VF in the setting of ischaemic (n = 15), hypertrophic (n = 8) or dilated cardiomyopathy (n = 12), or Brugada syndrome (n = 19). Ventricular fibrillation was mapped using body-surface mapping to identify driver (reentrant and focal) areas and invasive Purkinje mapping. Purkinje drivers were defined as Purkinje activities faster than the local ventricular rate. Structural substrate was delineated by electrogram criteria and by imaging. Catheter ablation was performed in 41 patients with recurrent VF. Sixty-one episodes of spontaneous (n = 10) or induced (n = 51) VF were mapped. Ventricular fibrillation was organized for the initial 5.0 ± 3.4 s, exhibiting large wavefronts with similar cycle lengths (CLs) across both ventricles (197 ± 23 vs. 196 ± 22 ms, P = 0.9). Most drivers (81%) originated from areas associated with the structural substrate. The Purkinje system was implicated as a trigger or driver in 43% of patients with cardiomyopathy. The transition to disorganized VF was associated with the acceleration of initial reentrant activities (CL shortening from 187 ± 17 to 175 ± 20 ms, P < 0.001), then spatial dissemination of drivers. Purkinje and substrate ablation resulted in the reduction of VF recurrences from a pre-procedural median of seven episodes [interquartile range (IQR) 4-16] to 0 episode (IQR 0-2) (P < 0.001) at 56 ± 30 months. The onset of human VF is sustained by activities originating from Purkinje and structural substrate, before spreading throughout the ventricles to establish disorganized VF. Targeted ablation results in effective reduction of VF burden. The initial phase of human ventricular fibrillation (VF) is critical as it involves the primary activities leading to sustained VF and arrhythmic sudden death. The origin of such activities is unknown. Body-surface mapping shows that most drivers (≈80%) during the initial VF phase originate from electrophysiologically defined structural substrates. Repetitive Purkinje activities can be elicited by programmed stimulation and are implicated as drivers in 37% of cardiomyopathy patients. The onset of human VF is mostly associated with activities from the Purkinje network and structural substrate, before spreading throughout the ventricles to establish sustained VF. Targeted ablation reduces or eliminates VF recurrence.
Identifiants
pubmed: 35134898
pii: 6521660
doi: 10.1093/eurheartj/ehab893
pmc: PMC8934691
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1234-1247Commentaires et corrections
Type : CommentIn
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Cardiology.
Références
Circ J. 2008 Jul;72(7):1185-92
pubmed: 18577833
Circ Arrhythm Electrophysiol. 2021 Mar;14(3):e008868
pubmed: 33550811
HeartRhythm Case Rep. 2020 Oct 13;6(12):955-959
pubmed: 33365248
J Am Heart Assoc. 2014 Feb 28;3(1):e000495
pubmed: 24584738
Nat Rev Cardiol. 2016 Mar;13(3):155-66
pubmed: 26727298
J Am Coll Cardiol. 2004 May 19;43(10):1834-42
pubmed: 15145109
JACC Clin Electrophysiol. 2018 Sep;4(9):1155-1162
pubmed: 30236388
Circulation. 2012 May 8;125(18):2184-96
pubmed: 22492578
Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H262-9
pubmed: 22037192
Heart Rhythm. 2021 May;18(5):732-733
pubmed: 33482384
Circ Res. 2000 Dec 8;87(12):1103-7
pubmed: 11110766
Heart Rhythm. 2019 Jul;16(7):1021-1027
pubmed: 30710740
JACC Clin Electrophysiol. 2015 Jun;1(3):187-197
pubmed: 29759364
Cardiovasc Res. 2012 Feb 1;93(2):272-9
pubmed: 22144474
Circulation. 2003 Aug 12;108(6):704-10
pubmed: 12885746
Eur Heart J Suppl. 2021 Oct 08;23(Suppl E):E112-E117
pubmed: 34650368
Circulation. 1981 Jun;63(6):1371-9
pubmed: 7226483
Sci Rep. 2019 Nov 13;9(1):16671
pubmed: 31723154
Front Physiol. 2020 Sep 23;11:554838
pubmed: 33071814
Europace. 2021 Mar 4;23(23 Suppl 1):i71-i79
pubmed: 33463686
J Am Heart Assoc. 2018 Aug 7;7(15):e009070
pubmed: 30371233
Heart Rhythm. 2019 Aug;16(8):1268-1272
pubmed: 30980946
Circulation. 2003 Jul 22;108(3):354-9
pubmed: 12835210
Circ Arrhythm Electrophysiol. 2016 Aug;9(8):
pubmed: 27516464
Circulation. 2010 Nov 30;122(22):2335-48
pubmed: 21147730
Eur Heart J. 2015 Nov 1;36(41):2793-2867
pubmed: 26320108
J Cardiovasc Electrophysiol. 2015 Jan;26(1):110-5
pubmed: 25216244
Circ Arrhythm Electrophysiol. 2013 Apr;6(2):342-50
pubmed: 23476043
Cardiovasc Res. 2021 Mar 21;117(4):1078-1090
pubmed: 32402067
JACC Clin Electrophysiol. 2018 Sep;4(9):1123-1140
pubmed: 30236385
Heart Rhythm. 2019 Mar;16(3):435-442
pubmed: 30385382
Heart Rhythm. 2010 Aug;7(8):1036-42
pubmed: 20493276
Circulation. 2011 Mar 29;123(12):1270-9
pubmed: 21403098
Circ Arrhythm Electrophysiol. 2017 May;10(5):e005053
pubmed: 28500178
Circ Arrhythm Electrophysiol. 2012 Oct;5(5):1001-9
pubmed: 22923272
Front Physiol. 2021 Mar 23;12:648396
pubmed: 33833689
JACC Clin Electrophysiol. 2018 Mar;4(3):316-327
pubmed: 30089556
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2589-97
pubmed: 17259437
Circ Res. 2002 Oct 18;91(8):733-40
pubmed: 12386151
Nat Med. 2004 Apr;10(4):422-8
pubmed: 15034569
Circulation. 2019 May 14;139(20):2315-2325
pubmed: 30929474
Circulation. 2006 Aug 8;114(6):536-42
pubmed: 16880326
Circ Res. 1988 Jun;62(6):1191-209
pubmed: 2454762