Vasculature-on-a-chip platform with innate immunity enables identification of angiopoietin-1 derived peptide as a therapeutic for SARS-CoV-2 induced inflammation.
Journal
Lab on a chip
ISSN: 1473-0189
Titre abrégé: Lab Chip
Pays: England
ID NLM: 101128948
Informations de publication
Date de publication:
15 03 2022
15 03 2022
Historique:
pubmed:
11
2
2022
medline:
29
3
2022
entrez:
10
2
2022
Statut:
epublish
Résumé
Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.
Identifiants
pubmed: 35142777
doi: 10.1039/d1lc00817j
pmc: PMC9207819
mid: NIHMS1785837
doi:
Substances chimiques
Angiopoietin-1
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1171-1186Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL076485
Pays : United States
Références
Nature. 2022 Jun;606(7914):576-584
pubmed: 35385861
Circ Res. 2000 Sep 29;87(7):603-7
pubmed: 11009566
J Virol. 2021 Feb 26;:
pubmed: 33637603
Circ Res. 2015 May 22;116(11):1772-82
pubmed: 25840803
Cell Adh Migr. 2017 Jan 2;11(1):24-38
pubmed: 27159116
Virology. 2007 Oct 25;367(2):367-74
pubmed: 17631932
Am J Kidney Dis. 2020 Jul;76(1):4-6
pubmed: 32276031
Nature. 2020 Mar;579(7798):270-273
pubmed: 32015507
Sci Rep. 2016 Dec 22;6:39473
pubmed: 28004759
N Engl J Med. 2021 Feb 25;384(8):693-704
pubmed: 32678530
PLoS One. 2013;8(1):e52449
pubmed: 23308112
Sci Adv. 2020 Dec 9;6(50):
pubmed: 33187979
Cardiovasc Res. 2020 May 1;116(6):1097-1100
pubmed: 32227090
mBio. 2020 Dec 11;11(6):
pubmed: 33310781
Nat Rev Immunol. 2021 May;21(5):319-329
pubmed: 33824483
Endocrinology. 1992 Aug;131(2):710-4
pubmed: 1639018
Circ Heart Fail. 2015 Mar;8(2):333-41
pubmed: 25632037
Front Immunol. 2019 Jun 25;10:1426
pubmed: 31293586
J Allergy Clin Immunol. 2021 Jan;147(1):107-111
pubmed: 32920092
J Am Soc Nephrol. 2020 Jul;31(7):1380-1383
pubmed: 32366514
Nat Protoc. 2021 Apr;16(4):2158-2189
pubmed: 33790475
PLoS One. 2014 Mar 19;9(3):e92082
pubmed: 24647450
Cell Metab. 2020 Sep 1;32(3):437-446.e5
pubmed: 32697943
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001-7003
pubmed: 32165541
Intensive Care Med. 2020 Apr;46(4):586-590
pubmed: 32125455
Front Immunol. 2020 Jul 10;11:1708
pubmed: 32754163
ACS Chem Neurosci. 2020 Apr 1;11(7):995-998
pubmed: 32167747
J Virol. 2005 Dec;79(23):14614-21
pubmed: 16282461
Lancet Rheumatol. 2020 Jul;2(7):e437-e445
pubmed: 32835247
J Thromb Haemost. 2018 Feb;16(2):231-241
pubmed: 29193703
Gut. 2020 Jun;69(6):997-1001
pubmed: 32241899
Arterioscler Thromb Vasc Biol. 2020 Oct;40(10):2404-2407
pubmed: 32762443
Nature. 2001 Apr 26;410(6832):1103-7
pubmed: 11323674
Nat Commun. 2015 Jan 30;6:5962
pubmed: 25635707
J Infect Dis. 2020 Aug 17;222(6):894-898
pubmed: 32582936
Emerg Infect Dis. 2020 Sep;26(9):2054-2063
pubmed: 32558639
J Thromb Thrombolysis. 2020 Jul;50(1):54-67
pubmed: 32415579
Arterioscler Thromb Vasc Biol. 2020 Aug;40(8):1818-1829
pubmed: 32510978
Br J Pharmacol. 2003 May;139(2):329-36
pubmed: 12770938
Front Immunol. 2019 Oct 01;10:2314
pubmed: 31632399
Science. 2020 May 29;368(6494):1012-1015
pubmed: 32303590
Nature. 2020 Jul;583(7818):830-833
pubmed: 32380511
Adv Funct Mater. 2020 Nov 25;30(48):
pubmed: 33692660
PLoS One. 2013 Aug 27;8(8):e72956
pubmed: 24013716
Angiogenesis. 2020 Nov;23(4):611-620
pubmed: 32458111
N Engl J Med. 2021 Jun 3;384(22):2092-2101
pubmed: 33835769
Circulation. 2020 May 19;141(20):1648-1655
pubmed: 32200663
J Infect Dis. 2021 Aug 2;224(3):395-406
pubmed: 33493287
Lancet. 2020 Mar 28;395(10229):1033-1034
pubmed: 32192578
Trends Cardiovasc Med. 2021 Jan;31(1):1-5
pubmed: 33068723
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4542-4550
pubmed: 33455163
Cytokine Growth Factor Rev. 2020 Aug;54:62-75
pubmed: 32513566
N Engl J Med. 2021 Apr 22;384(16):1503-1516
pubmed: 33631066
Cells. 2019 May 17;8(5):
pubmed: 31108880
Lancet Microbe. 2020 May;1(1):e14-e23
pubmed: 32835326
Gastroenterology. 2020 May;158(6):1831-1833.e3
pubmed: 32142773
Nat Immunol. 2020 Nov;21(11):1327-1335
pubmed: 32839612