Epidemiological and clinical insights from SARS-CoV-2 RT-PCR crossing threshold values, France, January to November 2020.
COVID-19
RT-PCR
SARS-CoV-2
epidemiology
statistical modelling
virus load
Journal
Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin
ISSN: 1560-7917
Titre abrégé: Euro Surveill
Pays: Sweden
ID NLM: 100887452
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
entrez:
11
2
2022
pubmed:
12
2
2022
medline:
16
2
2022
Statut:
ppublish
Résumé
BackgroundThe COVID-19 pandemic has led to an unprecedented daily use of RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of quantification cycles (Cq), is debated because of strong potential biases.AimWe explored the possibility to use Cq values from SARS-CoV-2 screening tests to better understand the spread of an epidemic and to better understand the biology of the infection.MethodsWe used linear regression models to analyse a large database of 793,479 Cq values from tests performed on more than 2 million samples between 21 January and 30 November 2020, i.e. the first two pandemic waves. We performed time series analysis using autoregressive integrated moving average (ARIMA) models to estimate whether Cq data information improves short-term predictions of epidemiological dynamics.ResultsAlthough we found that the Cq values varied depending on the testing laboratory or the assay used, we detected strong significant trends associated with patient age, number of days after symptoms onset or the state of the epidemic (the temporal reproduction number) at the time of the test. Furthermore, knowing the quartiles of the Cq distribution greatly reduced the error in predicting the temporal reproduction number of the COVID-19 epidemic.ConclusionOur results suggest that Cq values of screening tests performed in the general population generate testable hypotheses and help improve short-term predictions for epidemic surveillance.
Identifiants
pubmed: 35144725
doi: 10.2807/1560-7917.ES.2022.27.6.2100406
pmc: PMC8832522
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Euro Surveill. 2021 Jul;26(28):
pubmed: 34269174
Euro Surveill. 2021 Sep;26(37):
pubmed: 34533119
Nature. 2021 Feb;590(7844):134-139
pubmed: 33348340
Epidemics. 2019 Dec;29:100356
pubmed: 31624039
Nature. 2021 May;593(7858):270-274
pubmed: 33723411
Elife. 2021 Jul 12;10:
pubmed: 34250907
Epidemics. 2021 Jun;35:100459
pubmed: 34015676
Int J Infect Dis. 2021 Dec;113:12-14
pubmed: 34601145
Trends Microbiol. 2021 Nov;29(11):970-972
pubmed: 34535373
J Gen Virol. 2020 Sep;101(9):925-940
pubmed: 32568027
Int J Epidemiol. 2022 Jan 6;50(6):1795-1803
pubmed: 34999848
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23652-23662
pubmed: 32868447
Science. 2020 Jul 10;369(6500):208-211
pubmed: 32404476
Science. 2021 May 21;372(6544):815-821
pubmed: 33853970
Nature. 2021 Jan;589(7840):125-130
pubmed: 32906143
Aging Dis. 2020 Dec 1;11(6):1481-1495
pubmed: 33269102
Emerg Infect Dis. 2021 May;27(5):1496-1499
pubmed: 33769253
Science. 2021 Jul 16;373(6552):
pubmed: 34083451
MMWR Morb Mortal Wkly Rep. 2021 Aug 06;70(31):1059-1062
pubmed: 34351882
Int J Infect Dis. 2021 Oct;111:100-107
pubmed: 34403783
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8):
pubmed: 33536313
Science. 2021 Aug 20;373(6557):889-895
pubmed: 34301854
Nat Med. 2020 May;26(5):672-675
pubmed: 32296168
Am J Epidemiol. 2013 Nov 1;178(9):1505-12
pubmed: 24043437
Sci Data. 2020 Oct 8;7(1):345
pubmed: 33033256