Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation.
ambient remediation
metal oxides
nanostructures
photocatalyst
solid state
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
20 Jan 2022
20 Jan 2022
Historique:
received:
06
11
2021
revised:
09
12
2021
accepted:
13
12
2021
entrez:
15
2
2022
pubmed:
16
2
2022
medline:
4
3
2022
Statut:
epublish
Résumé
Nanomaterials have attracted much attention over the last decades due to their very different properties compared to those of bulk equivalents, such as a large surface-to-volume ratio, the size-dependent optical, physical, and magnetic properties. A number of solution fabrication methods have been developed for the synthesis of metal and metal oxides nanoparticles, but few solid-state methods have been reported. The application of nanostructured materials to electronic solid-state devices or to high-temperature technology requires, however, adequate solid-state methods for obtaining nanostructured materials. In this review, we discuss some of the main current methods of obtaining nanomaterials in solid state, and also we summarize the obtaining of nanomaterials using a new general method in solid state. This new solid-state method to prepare metals and metallic oxides nanostructures start with the preparation of the macromolecular complexes chitosan·Xn and PS-co-4-PVP·MXn as precursors (X = anion accompanying the cationic metal, n = is the subscript, which indicates the number of anions in the formula of the metal salt and PS-co-4-PVP = poly(styrene-co-4-vinylpyridine)). Then, the solid-state pyrolysis under air and at 800 °C affords nanoparticles of M°, M
Identifiants
pubmed: 35163017
pii: ijms23031093
doi: 10.3390/ijms23031093
pmc: PMC8835339
pii:
doi:
Substances chimiques
Metals
0
Oxides
0
Polymers
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : MCIN/AEI/ 10.13039/501100011033
ID : PID2019-107106RB-C32
Organisme : Fondecyt
ID : 1160241
Références
J Am Chem Soc. 2003 Dec 24;125(51):16050-7
pubmed: 14677997
J Am Chem Soc. 2003 May 14;125(19):5638-9
pubmed: 12733895
J Phys Chem B. 2006 Aug 3;110(30):14709-13
pubmed: 16869577
ACS Cent Sci. 2019 Jan 23;5(1):29-42
pubmed: 30693323
J Nanosci Nanotechnol. 2007 Jun;7(6):1969-74
pubmed: 17654974
J Phys Chem Lett. 2012 Feb 2;3(3):399-404
pubmed: 26285858
J Colloid Interface Sci. 2008 Jan 15;317(2):351-74
pubmed: 18028940
J Environ Manage. 2012 Dec 30;113:170-83
pubmed: 23023039
Water Res. 2010 May;44(10):2997-3027
pubmed: 20378145
Chemistry. 2013 Apr 22;19(17):5297-305
pubmed: 23460380
Langmuir. 2008 Oct 21;24(20):12040-1
pubmed: 18817425
J Phys Chem B. 2006 Nov 23;110(46):23007-11
pubmed: 17107138
Chem Asian J. 2010 Jan 4;5(1):36-45
pubmed: 19768718
Angew Chem Int Ed Engl. 2005 Nov 4;44(43):7048-53
pubmed: 16224754
J Am Chem Soc. 2012 Jul 25;134(29):11880-3
pubmed: 22738173
Chem Rev. 2010 Jun 9;110(6):3767-804
pubmed: 20170127
Chem Rev. 2004 Sep;104(9):4063-104
pubmed: 15352786
Nanoscale. 2016 Jan 7;8(1):365-77
pubmed: 26616162
J Phys Chem B. 2006 Feb 23;110(7):3093-7
pubmed: 16494314
ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16738-49
pubmed: 26158693
Inorg Chem. 2011 Jun 20;50(12):5539-44
pubmed: 21568295
J Colloid Interface Sci. 2017 Jul 15;498:351-363
pubmed: 28343133
Nanomaterials (Basel). 2020 Dec 10;10(12):
pubmed: 33321759
Langmuir. 2008 Sep 16;24(18):10427-31
pubmed: 18680327
Adv Mater. 2020 May;32(18):e1902806
pubmed: 31264299
J Am Chem Soc. 2009 Mar 11;131(9):3162-3
pubmed: 19256565
Chem Rev. 2009 Sep;109(9):4283-374
pubmed: 19650663
Angew Chem Int Ed Engl. 2005 May 20;44(21):3256-60
pubmed: 15844106
ACS Omega. 2021 Apr 02;6(14):9391-9400
pubmed: 33869919
Acc Chem Res. 2006 Jan;39(1):53-61
pubmed: 16411740
Angew Chem Int Ed Engl. 2010 Jun 21;49(27):4544-65
pubmed: 20514651
J Nanosci Nanotechnol. 2014 Sep;14(9):6748-53
pubmed: 25924326
J Am Chem Soc. 2009 Mar 25;131(11):3824-5
pubmed: 19243180
Chem Rev. 2007 May;107(5):1454-532
pubmed: 17488056
Nanoscale. 2020 Oct 22;12(40):20719-20725
pubmed: 33029600
J Am Chem Soc. 2003 Dec 24;125(51):15718-9
pubmed: 14677942
Chem Rev. 2007 Jul;107(7):2891-959
pubmed: 17590053
Nanoscale. 2019 Aug 7;11(29):14060-14069
pubmed: 31313799
Adv Mater. 2010 Jan 12;22(2):219-48
pubmed: 20217685
Chem Rev. 2008 Jun;108(6):2064-110
pubmed: 18543879
Nanoscale. 2012 Jan 21;4(2):591-9
pubmed: 22143166
Nano Lett. 2008 Jan;8(1):265-70
pubmed: 18072799
J Phys Chem B. 2006 Dec 7;110(48):24450-6
pubmed: 17134200
Nanotechnology. 2020 Feb 7;31(7):072001
pubmed: 31627201
Chem Commun (Camb). 2011 Aug 21;47(31):8958-60
pubmed: 21735002
Chemistry. 2012 Jul 2;18(27):8283-7
pubmed: 22653548
Nanoscale. 2017 Sep 21;9(36):13772-13785
pubmed: 28885633
Chem Rev. 2014 Aug 13;114(15):7610-30
pubmed: 25003956
Inorg Chem. 2016 Dec 19;55(24):12798-12806
pubmed: 27989197
Inorg Chem. 2012 Jun 4;51(11):6228-36
pubmed: 22587306
Sci Rep. 2013;3:2642
pubmed: 24026532
Nanoscale. 2013 Jul 7;5(13):5703-14
pubmed: 23423120
Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7632-59
pubmed: 20718055
ACS Appl Mater Interfaces. 2017 May 24;9(20):17195-17200
pubmed: 28471161
Chem Rev. 2018 May 23;118(10):4981-5079
pubmed: 29658707
Sci Rep. 2019 Apr 29;9(1):6603
pubmed: 31036893