Phosphorylation of Eukaryotic Initiation Factor 4G1 (eIF4G1) at Ser1147 Is Specific for eIF4G1 Bound to eIF4E in Delayed Neuronal Death after Ischemia.
cerebral ischemia
confocal microscopy
eIF4E
eIF4G1
neuronal death
protein phosphorylation
protein synthesis regulation
vulnerable regions
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
06 Feb 2022
06 Feb 2022
Historique:
received:
30
12
2021
revised:
24
01
2022
accepted:
30
01
2022
entrez:
15
2
2022
pubmed:
16
2
2022
medline:
11
3
2022
Statut:
epublish
Résumé
Ischemic strokes are caused by a reduction in cerebral blood flow and both the ischemic period and subsequent reperfusion induce brain injury, with different tissue damage depending on the severity of the ischemic insult, its duration, and the particular areas of the brain affected. In those areas vulnerable to cerebral ischemia, the inhibition of protein translation is an essential process of the cellular response leading to delayed neuronal death. In particular, translation initiation is rate-limiting for protein synthesis and the eukaryotic initiation factor (eIF) 4F complex is indispensable for cap-dependent protein translation. In the eIF4F complex, eIF4G is a scaffolding protein that provides docking sites for the assembly of eIF4A and eIF4E, binding to the cap structure of the mRNA and stabilizing all proteins of the complex. The eIF4F complex constituents, eIF4A, eIF4E, and eIF4G, participate in translation regulation by their phosphorylation at specific sites under cellular stress conditions, modulating the activity of the cap-binding complex and protein translation. This work investigates the phosphorylation of eIF4G1 involved in the eIF4E/eIF4G1 association complex, and their regulation in ischemia-reperfusion (IR) as a stress-inducing condition. IR was induced in an animal model of transient cerebral ischemia and the results were studied in the resistant cortical region and in the vulnerable hippocampal CA1 region. The presented data demonstrate the phosphorylation of eIF4G1 at Ser
Identifiants
pubmed: 35163752
pii: ijms23031830
doi: 10.3390/ijms23031830
pmc: PMC8836865
pii:
doi:
Substances chimiques
EIF4E protein, human
0
EIF4G1 protein, human
0
Eukaryotic Initiation Factor-4E
0
Eukaryotic Initiation Factor-4G
0
Serine
452VLY9402
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Instituto de Salud Carlos III
ID : PI18/00255
Références
J Neurochem. 1996 Nov;67(5):2005-12
pubmed: 8863507
J Cereb Blood Flow Metab. 2013 Aug;33(8):1173-81
pubmed: 23591646
J Nutr. 2004 Jul;134(7):1704-10
pubmed: 15226457
Neurol Clin. 2006 Feb;24(1):1-21
pubmed: 16443127
EMBO J. 2000 Feb 1;19(3):434-44
pubmed: 10654941
Ann Neurol. 1994 Oct;36(4):557-65
pubmed: 7944288
J Biol Chem. 2010 Nov 5;285(45):34355-63
pubmed: 20736160
Lancet. 2014 Jan 18;383(9913):245-54
pubmed: 24449944
Acta Neuropathol. 1986;71(1-2):88-93
pubmed: 3776478
Lancet Neurol. 2019 May;18(5):459-480
pubmed: 30879893
J Mol Neurosci. 2016 May;59(1):90-8
pubmed: 26842916
EMBO J. 2000 Jul 3;19(13):3465-74
pubmed: 10880459
Gene. 2006 Nov 1;382:1-11
pubmed: 16859839
EMBO J. 1995 Nov 15;14(22):5701-9
pubmed: 8521827
Cell. 1976 Dec;9(4 PT 2):645-53
pubmed: 1017010
Structure. 2013 Apr 2;21(4):517-27
pubmed: 23478064
Nucleic Acids Res. 2008 Jan;36(1):168-78
pubmed: 18003655
Mol Cell Biol. 2011 Jul;31(14):2947-59
pubmed: 21576361
Circulation. 2016 Jan 26;133(4):e38-360
pubmed: 26673558
J Cell Biol. 2008 Apr 21;181(2):293-307
pubmed: 18426977
J Cereb Blood Flow Metab. 2002 Feb;22(2):127-41
pubmed: 11823711
J Cereb Blood Flow Metab. 2006 Sep;26(9):1141-7
pubmed: 16395277
Cell Rep. 2013 Oct 31;5(2):433-44
pubmed: 24139800
Science. 2020 Sep 4;369(6508):1220-1227
pubmed: 32883864
Neuroscience. 2006;139(4):1235-48
pubmed: 16530975
Int J Clin Exp Pathol. 2018 Jul 01;11(7):3487-3493
pubmed: 31949727
Virology. 1998 Jun 5;245(2):229-40
pubmed: 9636362
Cell. 2009 Feb 20;136(4):731-45
pubmed: 19239892
Mol Cell Biol. 2013 Mar;33(5):937-46
pubmed: 23263986
Biochem J. 2001 Aug 1;357(Pt 3):819-26
pubmed: 11463353
Cell Signal. 2013 Jul;25(7):1598-607
pubmed: 23563259
Ann Neurol. 1982 May;11(5):491-8
pubmed: 7103425
Mol Cell. 2001 Jan;7(1):193-203
pubmed: 11172724
Prog Brain Res. 1993;96:161-77
pubmed: 8332739
Mol Cell Biol. 2014 Feb;34(3):439-51
pubmed: 24248602
J Biol Chem. 2007 Jan 19;282(3):1695-708
pubmed: 17130132
Mol Cell Biol. 2005 Dec;25(23):10556-65
pubmed: 16287867
J Biol Chem. 2016 Dec 30;291(53):27252-27264
pubmed: 27836976
J Neurol Sci. 2000 Oct 1;179(S 1-2):1-33
pubmed: 11054482
Neuropathology. 2000 Sep;20 Suppl:S95-7
pubmed: 11037198
Prog Neurobiol. 2008 Jul;85(3):273-96
pubmed: 18511172
Nature. 2013 Jan 17;493(7432):371-7
pubmed: 23172145
Int J Mol Sci. 2021 Sep 25;22(19):
pubmed: 34638676
Cancer Res. 2008 Jul 1;68(13):5326-34
pubmed: 18593934
J Neurochem. 2007 Nov;103(4):1368-80
pubmed: 17760864
J Neurochem. 2004 Jan;88(1):136-47
pubmed: 14675157
J Cereb Blood Flow Metab. 2007 May;27(5):875-93
pubmed: 16926841
Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27
pubmed: 20094052
Structure. 2006 May;14(5):913-23
pubmed: 16698552
Nat Rev Mol Cell Biol. 2009 May;10(5):307-18
pubmed: 19339977
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4
pubmed: 24753421
PLoS One. 2015 Mar 30;10(3):e0121958
pubmed: 25822952
Physiol Rev. 1999 Oct;79(4):1431-568
pubmed: 10508238