Design and Development of a Medical Image Databank for Assisting Studies in Radiomics.
Biobank
CHAVI
DICOM
Databank
Oncology
PHI
Radiomics
Software
WEB
Journal
Journal of digital imaging
ISSN: 1618-727X
Titre abrégé: J Digit Imaging
Pays: United States
ID NLM: 9100529
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
received:
15
01
2021
accepted:
22
12
2021
revised:
17
12
2021
pubmed:
16
2
2022
medline:
3
6
2022
entrez:
15
2
2022
Statut:
ppublish
Résumé
CompreHensive Digital ArchiVe of Cancer Imaging - Radiation Oncology (CHAVI-RO) is a multi-tier WEB-based medical image databank. It supports archiving de-identified radiological and clinical datasets in a relational database. A semantic relational database model is designed to accommodate imaging and treatment data of cancer patients. It aims to provide key datasets to investigate and model the use of radiological imaging data in response to radiation. This domain of research area addresses the modeling and analysis of complete treatment data of oncology patient. A DICOM viewer is integrated for reviewing the uploaded de-identified DICOM dataset. In a prototype system we carried out a pilot study with cancer data of four diseased sites, namely breast, head and neck, brain, and lung cancers. The representative dataset is used to estimate the data size of the patient. A role-based access control module is integrated with the image databank to restrict the user access limit. We also perform different types of load tests to analyze and quantify the performance of the CHAVI databank.
Identifiants
pubmed: 35166968
doi: 10.1007/s10278-021-00576-6
pii: 10.1007/s10278-021-00576-6
pmc: PMC9156629
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
408-423Subventions
Organisme : Ministry of Human Resource Development
ID : IIT/SRIC/CS/NDM/2018-19/096
Informations de copyright
© 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
Références
K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, et al. The cancer imaging archive (tcia): maintaining and operating a public information repository. Journal of digital imaging, 26(6):1045–1057, 2013.
doi: 10.1007/s10278-013-9622-7
A. S. Foundatio. The HTTP Connector, 2020 (accessed July 26, 2020). https://tomcat.apache.org/tomcat-7.0-doc/config/http.html .
S. Gatidis, S. D. Heber, C. Storz, and F. Bamberg. Population-based imaging biobanks as source of big data. La radiologia medica, 122(6):430–436, 2017.
doi: 10.1007/s11547-016-0684-8
R. J. Gillies, P. E. Kinahan, and H. Hricak. Radiomics: images are more than pictures, they are data. Radiology, 278(2):563–577, 2016.
doi: 10.1148/radiol.2015151169
E. H. Halili. Apache JMeter: A practical beginner’s guide to automated testing and performance measurement for your websites. Packt Publishing Ltd, 2008.
S. Karlin and F. Ost. Counts of long aligned word matches among random letter sequences. Advances in applied probability, 19(2):293–351, 1987.
doi: 10.2307/1427422
S. Kundu, S. Chakraborty, S. Chatterjee, R. B. Achari, J. Mukhopadhyay, P. P. Das, I. Mallick, M. Arunsingh, T. Bhattacharyyaa, et al. De-identification of radiomics data retaining longitudinal temporal information. J. Medical Syst., 44(5):99, 2020.
doi: 10.1007/s10916-020-01563-0
S. Kundu, S. Chakraborty, J. Mukhopadhyay, S. Das, S. Chatterjee, R. Basu Achari, I. Mallick, P. Pratim Das, M. Arunsingh, T. Bhattacharyya, et al. Research goal-driven data model and harmonization for de-identifying patient data in radiomics. Journal of Digital Imaging, 34(4):986–1004, 2021.
A. K. Maji, A. Mukhoty, A. K. Majumdar, J. Mukhopadhyay, S. Sural, S. Paul, and B. Majumdar. Security analysis and implementation of web-based telemedicine services with a four-tier architecture. In 2008 Second International Conference on Pervasive Computing Technologies for Healthcare, pages 46–54. IEEE, 2008.
C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, et al. Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 12(3), 2015.
H. Volzke. Study of health in pomerania (ship). concept, design and selected results. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 55(6-7):790–4, 2012.
A. Vukotic and J. Goodwill. Apache Tomcat 7. Springer, 2011.
M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J. W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1):1–9, 2016.