Relative Contributions of Pseudohypoxia and Inflammation to Peritoneal Alterations with Long-Term Peritoneal Dialysis Patients.
connective tissue growth factor
glucose exposure
inflammation
peritoneal dialysis
peritoneal membrane alterations
plasminogen activator inhibitor-1
pseudohypoxia
vascular endothelial growth factor
Journal
Clinical journal of the American Society of Nephrology : CJASN
ISSN: 1555-905X
Titre abrégé: Clin J Am Soc Nephrol
Pays: United States
ID NLM: 101271570
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
pubmed:
17
2
2022
medline:
11
8
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
Long-term peritoneal dialysis is associated with alterations in peritoneal function, like the development of high small solute transfer rates and impaired ultrafiltration. Also, morphologic changes can develop, the most prominent being loss of mesothelium, vasculopathy, and interstitial fibrosis. Current research suggests peritoneal inflammation as the driving force for these alterations. In this review, the available evidence for inflammation is examined and a new hypothesis is put forward consisting of high glucose-induced pseudohypoxia. Hypoxia of cells is characterized by a high (oxidized-reduced nicotinamide dinucleotide ratio) NADH-NAD
Identifiants
pubmed: 35168992
pii: 01277230-202208000-00025
doi: 10.2215/CJN.15371121
pmc: PMC9435980
doi:
Substances chimiques
Dialysis Solutions
0
Vascular Endothelial Growth Factor A
0
NAD
0U46U6E8UK
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1259-1266Informations de copyright
Copyright © 2022 by the American Society of Nephrology.
Références
Coester AM, Smit W, Struijk DG, Parikova A, Krediet RT: Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit Dial Int 34: 195–203, 2014
Krediet RT: Acquired decline in ultrafiltration in peritoneal dialysis: The role of glucose. J Am Soc Nephrol 32: 2408–2415, 2021
Parikova A, Michalickova K, van Diepen ATN, Voska L, Viklicky O, Krediet RT: Do low GDP neutral pH solutions prevent or retard peritoneal membrane alterations in long-term peritoneal dialysis? [published online ahead of print July 14, 2021]. Perit Dial Int 10.1177/08968608211027007008
doi: 10.1177/08968608211027007008
Ross R: Atherosclerosis--An inflammatory disease. N Engl J Med 340: 115–126, 1999
Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L: Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 17: 43–52, 1987
Douma CE, de Waart DR, Struijk DG, Krediet RT: Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 132: 329–340, 1998
Zemel D, Koomen GCM, Hart AAM, ten Berge IJ, Struijk DG, Krediet RT: Relationship of TNF-α, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 122: 686–696, 1993
Pecoits-Filho R, Stenvinkel P, Wang AY-M, Heimbürger O, Lindholm B: Chronic inflammation in peritoneal dialysis: The search for the holy grail? Perit Dial Int 24: 327–339, 2004
Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, Noh H, Williams PF, Williams AJ, Davison S, Dorval M, Summers A, Williams JD, Bankart J, Davies SJ, Topley N; Global Fluid Study Investigators: Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 24: 2071–2080, 2013
Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF: Splancnic volume, not flow rate determines peritoneal permeability. ASAIO Trans 23: 583–587, 1989
Nakano T, Mizumasa T, Kuroki Y, Eriguchi M, Yoshida H, Taniguchi M, Masutani K, Tsuruya K, Kitazono T: Advanced glycation end products are associated with immature angiogenesis and peritoneal dysfunction in patients on peritoneal dialysis. Perit Dial Int 40: 67–75, 2020
Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT: Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13: 470–479, 2002
Tăranu T, Florea L, Păduraru D, Georgescu SO, Frâncu LL, Stan CI: Morphological changes of the peritoneal membrane in patients with long-term dialysis. Rom J Morphol Embryol 55: 927–932, 2014
Schaefer B, Bartosova M, Macher-Goeppinger S, Sallay P, Vörös P, Ranchin B, Vondrak K, Ariceta G, Zaloszyc A, Bayazit AK, Querfeld U, Cerkauskiene R, Testa S, Taylan C, VandeWalle J, Yap Y, Krmar RT, Büscher R, Mühlig AK, Drozdz D, Caliskan S, Lasitschka F, Fathallah-Shaykh S, Verrina E, Klaus G, Arbeiter K, Bhayadia R, Melk A, Romero P, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP: Neutral pH and low-glucose degradation product dialysis fluids induce major early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int 94: 419–429, 2018
Bartosova M, Schaefer B, Vondrak K, Sallay P, Taylan C, Cerkauskiene R, Dzierzega M, Milosevski-Lomic G, Büscher R, Zaloszyc A, Romero P, Lasitschka F, Warady BA, Schaefer F, Ujszaszi A, Schmitt CP: Peritoneal dialysis vintage and glucose exposure but not peritonitis episodes drive peritoneal membrane transformation during the first years of PD. Front Physiol 10: 356, 2019
Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJG, Becker AE, Hillen B, Borst C: Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 32: 655–662, 1998
Fijen JW, Struijk DG, Krediet RT, Boeschoten EW, de Vries JP, Arisz L: Dialysate leucocytosis in CAPD patients without clinical infection. Neth J Med 33: 270–280, 1988
Betjes MGH, Tuk CW, Struijk DG, Krediet RT, Arisz L, Hoefsmit ECM, Beelen RHJ: Immuno-effector characteristics of peritoneal cells during CAPD treatment: A longitudinal study. Kidney Int 43: 641–648, 1993
Parikova A, Hruba P, Krejcik Z, Stranecky V, Franekova J, Krediet RT, Viklicky O: Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Renal Physiol 318: F229–F237, 2020
Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L: Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron 42: 133–140, 1986
Buis B, Koomen GCM, Imholz ALT, Struijk DG, Reddingius RE, Arisz L, Krediet RT: Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Nephrol Dial Transplant 11: 1113–1120, 1996
Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT: Growth factors VEGF and TGF-β1 in peritoneal dialysis. J Lab Clin Med 134: 124–132, 1999
Lopes Barreto D, Coester AM, Struijk DG, Krediet RT: Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit Dial Int 33: 529–537, 2013
Lopes Barreto D, Coester AM, Noordzij M, Smit W, Struijk DG, Rogers S, de Waart DR, Krediet RT: Variability of effluent cancer antigen 125 and interleukin-6 determination in peritoneal dialysis patients. Nephrol Dial Transplant 26: 3739–3744, 2011
Pecoits-Filho R, Araújo MR, Lindholm B, Stenvinkel P, Abensur H, Romão Jr. JE, Marcondes M, De Oliveira AH, Noronha IL: Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 17: 1480–1486, 2002
Oh KH, Jung JY, Yoon MO, Song A, Lee H, Ro H, Hwang YH, Kim DK, Margetts P, Ahn C: Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol Dial Transplant 25: 1639–1646, 2010
Yu Z, Lambie M, Chess J, Williams A, Do JY, Topley N, Davies SJ: Peritoneal protein clearance is a function of local inflammation and membrane area wheres systemic inflammation and comorbidity predict survival of incident peritoneal dialysis patients. Front Physiol 10: 105, 2019
Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A, Castro e Melo J, Krediet RT: Evaluation of peritoneal transport and membrane status in peritoneal dialysis: Focus on incident fast transporters. Am J Nephrol 27: 84–91, 2007
Cho Y, Johnson DW, Vesey DA, Hawley CM, Pascoe EM, Clarke M, Topley N; balANZ Trial Investigators: Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol 15: 8, 2014
Archie JP: Mathematical coupling of data. A common source of error. Arch Surg 93: 297–303, 1981
Trayhurn P: Hypoxia and adipocyte physiology: Implications for adipose tissue dysfunction in obesity. Annu Rev Nutr 34: 207–236, 2014
Zinna A, Kurpisz M: Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Application and therapies. BioMed Res Int 2015: 549412, 2015
Darby IA, Hewitson TD: Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365: 553–562, 2016
Joseph JP, Harishankar MK, Pillai AA, Devi A: Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol 80: 23–32, 2018
Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG: Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813, 1993
Mohlin S, Wigerup C, Jögi A, Påhlman S: Hypoxia, pseudohypoxia and cellular differentiation. Exp Cell Res 356: 192–196, 2017
Navale AM, Paranjape AN: Glucose transporters: Physiological and pathological roles. Biophys Rev 8: 5–9, 2016
Cura AJ, Carruthers A: Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2: 863–914, 2012
Tilton RG, Baier LD, Harlow JE, Smith SR, Ostrow E, Williamson JR: Diabetes-induced glomerular dysfunction: Links to a more reduced cytosolic ratio of NADH/NAD + . Kidney Int 41: 778–788, 1992
Smit W, van Dijk P, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT: Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 23: 440–449, 2003
Krediet RT, van Westrhenen R, Zweers MM, Struijk DG: Clinical advantages of new peritoneal dialysis solutions. Nephrol Dial Transplant 17[Suppl 3]: 16–18, 2002
Galvan DL, Green NH, Danesh FR: The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int 92: 1051–1057, 2017
Halestrap AP, Wilson MC: The monocarboxylate transporter family--Role and regulation. IUBMB Life 64: 109–119, 2012
van Westrhenen R, Aten J, Aberra M, Dragt CAM, Deira G, Krediet RT: Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. Perit Dial Int 25[Suppl 3]: S18–S21, 2005
van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT: A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit Dial Int 28: 487–496, 2008
Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O: Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol 11: 717–728, 2000
Morishita Y, Ookawara S, Hirahara I, Muto S, Nagata D: HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells. Ren Fail 38: 282–289, 2016
Li J, Li SX, Gao XH, Zhao LF, Du J, Wang TY, Wang L, Zhang J, Wang HY, Dong R, Guo ZY: HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract 215: 644–652, 2019
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X: Stat3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 19: 283, 2021
Border WA, Noble NA: Transforming growth factor β in tissue fibrosis. N Engl J Med 331: 1286–1292, 1994
Liu M, Ning X, Li R, Yang Z, Yang X, Sun S, Qian Q: Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med 21: 1248–1259, 2017
Mason RM, Wahab NA: Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14: 1358–1373, 2003
Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J: Gene transfer of transforming growth factor-β1 to the rat peritoneum: Effects on membrane function. J Am Soc Nephrol 12: 2029–2039, 2001
Dvorak HF, Brown LF, Detmar M, Dvorak AM: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039, 1995
Ferrara N: Vascular endothelial growth factor. The trigger for neovascularization in the eye. Lab Invest 72: 615–618, 1995
Vriese AS, Tilton RG, Stephan CC, Lameire NH: Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 12: 1734–1741, 2001
Zweers MM, Struijk DG, Smit W, Krediet RT: Vascular endothelial growth factor in peritoneal dialysis: A longitudinal follow-up. J Lab Clin Med 137: 125–132, 2001
Parikova A, Krediet RT: Non-invasive measurement of peritoneal membrane alterations. Bull Dial Dom 3: 119–125, 2020
Lijnen HR: Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost 3: 35–45, 2005
Sakamoto K, Sakamoto T, Ogawa H: Effects of metabolic risk factors on production of plasminogen activator inhibitor-1 and adiponectin by adipocytes. Circ J 72: 844–846, 2008
Wilson RB: Hypoxia, cytokines and stromal recruitment: Parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 3: 20180103, 2018
Lee HB, Ha H: Plasminogen activator inhibitor-1 and diabetic nephropathy. Nephrology (Carlton) 10[Suppl]: S11–S13, 2005
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H: Plasminogen activator inhibitor type 1 as a regulator of fibrosis. J Cell Biochem 119: 17–27, 2018
Lopes Barreto D, Struijk DG, Krediet RT: Peritoneal effluent MMP-2 and PAI-1 in encapsulating peritoneal sclerosis. Am J Kidney Dis 65: 748–753, 2015
Valle-Tenney R, Rebolledo DL, Lipson KE, Brandan E: Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-β signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol 87: 48–65, 2020
Heilig CW, Deb DK, Abdul A, Riaz H, James LR, Salameh J, Nahman Jr. NS: GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol 38: 39–49, 2013
Oh KH, Margetts PJ: Cytokines and growth factors involved in peritoneal fibrosis of peritoneal dialysis patients. Int J Artif Organs 28: 129–134, 2005
Zarrinkalam KH, Stanley JM, Gray J, Oliver N, Faull RJ: Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney Int 64: 331–338, 2003
Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, Matsukawa Y, Imai M, Oliver N, Goldschmeding R, Aten J, Krediet RT, Yuzawa Y, Matsuo S: Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal
Corcoran SE, O’Neill RAJ: Hif1α and metabolic reprogramming in inflammation. J Clin Invest 126: 3699–3707, 2016
Robertson LM, Fletcher NM, Diamond MP, Saed GM: Evitar (L-Alanyl-L-Glutamine) regulates key signaling molecules in the pathogenesis of postoperative tissue fibrosis. Reprod Sci 26: 724–733, 2019
Ferrantelli E, Liappas G, Vila Cuenca M, Keuning ED, Foster TL, Vervloet MG, Lopéz-Cabrera M, Beelen RH: The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int 89: 625–635, 2016
Vychytil A, Herzog R, Probst P, Ribitsch W, Lhotta K, Machold-Fabrizii V, Wiesholzer M, Kaufmann M, Salmhofer H, Windpessl M, Rosenkranz AR, Oberbauer R, König F, Kratochwill K, Aufricht C: A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int 94: 1227–1237, 2018