The Association of COVID-19 and Reactive Oxygen Species Modulator 1 (ROMO1) with Oxidative Stress.
COVID-19
Oxidative Stress
Reactive Oxygen Species
Reactive Oxygen Species Modulator 1
Journal
Chonnam medical journal
ISSN: 2233-7385
Titre abrégé: Chonnam Med J
Pays: Korea (South)
ID NLM: 101564659
Informations de publication
Date de publication:
Jan 2022
Jan 2022
Historique:
received:
09
12
2021
revised:
27
12
2021
accepted:
28
12
2021
entrez:
16
2
2022
pubmed:
17
2
2022
medline:
17
2
2022
Statut:
ppublish
Résumé
There is no denying that the massive spread of COVID-19 around the world has worried everyone. The virus can cause mild to severe symptoms in various organs, especially the lungs. The virus affects oxidative stress in the cells. Reactive Oxygen Species modulator 1 (ROMO1) is one of the most important mitochondrial proteins that plays a critical regulatory role in the production of Reactive Oxygen Species (ROS). According to the studies, COVID-19 can promote oxidative stress through some important pathways, for instance, TNF-α and NF-κB routes. Furthermore, ROMO1 is closely related to these pathways and its dysfunction may affect these routes, then promote oxidative stress, and ultimately cause tissue damage, especially in the lungs. Another factor to consider is that the TNF-α and NF-κB pathways are associated with ROMO1, COVID-19, and oxidative stress. To summarize, it is hypothesized that COVID-19 may increase oxidative stress by affecting ROMO1. Understanding the exact molecular mechanisms of ROMO1 in the pathogenesis of COVID-19 can pave the way to find better therapeutic strategies.
Identifiants
pubmed: 35169552
doi: 10.4068/cmj.2022.58.1.1
pmc: PMC8813649
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
1-5Informations de copyright
© Chonnam Medical Journal, 2022.
Déclaration de conflit d'intérêts
CONFLICT OF INTEREST STATEMENT: None declared.
Références
Cancer Lett. 2015 May 28;361(1):33-8
pubmed: 25687884
MMWR Morb Mortal Wkly Rep. 2020 Feb 28;69(8):216-219
pubmed: 32106216
Arch Med Res. 2020 Jul;51(5):384-387
pubmed: 32402576
Eur Heart J. 2020 Sep 1;41(32):3038-3044
pubmed: 32882706
Oman Med J. 2020 Jun 30;35(3):e145
pubmed: 32647593
Antioxid Redox Signal. 2013 Oct 1;19(10):1085-94
pubmed: 22443458
Med Hypotheses. 2020 Oct;143:110102
pubmed: 32721799
Redox Biol. 2020 May;32:101500
pubmed: 32193146
Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E345-51
pubmed: 18073321
Clin Pract. 2020 May 28;10(2):1271
pubmed: 32509258
Antioxidants (Basel). 2020 Sep 29;9(10):
pubmed: 33003552
Viruses. 2020 Sep 29;12(10):
pubmed: 33003587
Cell Death Differ. 2010 Sep;17(9):1420-34
pubmed: 20203691
Autoimmunity. 2021 Jun;54(4):213-224
pubmed: 33899609
Hypertens Res. 2011 Feb;34(2):154-60
pubmed: 21124322
Ann Transl Med. 2020 Apr;8(7):497
pubmed: 32395541
Redox Biol. 2020 Sep;36:101655
pubmed: 32738789
Mol Biol Rep. 2020 Sep;47(9):6497-6505
pubmed: 32770525
J Gastrointest Cancer. 2020 Sep;51(3):939-946
pubmed: 31729644
Chonnam Med J. 2019 Sep;55(3):136-143
pubmed: 31598470
Medicine (Baltimore). 2021 Oct 1;100(39):e27157
pubmed: 34596114
Lancet. 2020 Mar 28;395(10229):1054-1062
pubmed: 32171076
Biochem Biophys Res Commun. 2014 Jan 3;443(1):49-55
pubmed: 24269823
Onco Targets Ther. 2020 Aug 18;13:8173-8180
pubmed: 32904444
Cardiovasc Res. 2007 Jul 1;75(1):29-39
pubmed: 17499227
Int J Oncol. 2015 May;46(5):2021-8
pubmed: 25673177
Nat Rev Immunol. 2020 Jun;20(6):355-362
pubmed: 32376901
Med Hypotheses. 2020 Nov;144:110024
pubmed: 32758871
Medicine (Baltimore). 2017 Jan;96(4):e5975
pubmed: 28121949
Clin Immunol. 2020 Jun;215:108410
pubmed: 32276140
Med Hypotheses. 2021 Jan;146:110360
pubmed: 33214002
J Cell Sci. 2011 Jun 1;124(Pt 11):1911-24
pubmed: 21558421
Sleep Breath. 2018 Sep;22(3):743-748
pubmed: 29302924
Inflammation. 2019 Oct;42(5):1555-1560
pubmed: 31049771
MMWR Morb Mortal Wkly Rep. 2020 Mar 27;69(12):343-346
pubmed: 32214079
Sci Signal. 2014 Jan 28;7(310):ra10
pubmed: 24473195