Electrochemical immunosensors using electrodeposited gold nanostructures for detecting the S proteins from SARS-CoV and SARS-CoV-2.
Diagnosis
Gold nanoparticles
Immunosensor
S protein
SARS-CoV
SARS-CoV-2
Journal
Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
21
12
2021
accepted:
01
02
2022
revised:
29
01
2022
pubmed:
17
2
2022
medline:
2
7
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
This paper reports the development of a low-cost (< US$ 0.03 per device) immunosensor based on gold-modified screen-printed carbon electrodes (SPCEs). As a proof of concept, the immunosensor was tested for a fast and sensitive determination of S proteins from both SARS-CoV and SARS-CoV-2, by a single disposable device. Gold nanoparticles were electrochemically deposited via direct reduction of gold ions on the electrode using amperometry. Capture antibodies from spike (S) protein were covalently immobilized on carboxylic groups of self-assembled monolayers (SAM) of mercaptoacetic acid (MAA) attached to the gold nanoparticles. Label-free detection of S proteins from both SARS-CoV and SARS-CoV-2 was performed with electrochemical impedance spectroscopy (EIS). The immunosensor fabricated with 9 s gold deposition had a high performance in terms of selectivity, sensitivity, and low limit of detection (LOD) (3.16 pmol L
Identifiants
pubmed: 35169906
doi: 10.1007/s00216-022-03956-1
pii: 10.1007/s00216-022-03956-1
pmc: PMC8853172
doi:
Substances chimiques
Gold
7440-57-5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5507-5517Subventions
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 164569/2020-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 303338/2019-9
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 315824/2020-4
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 423952/2018-8
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 465389/2014-7
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2014/40867-3
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2016/01919-6
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2017/05362-9
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2017/21097-3
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/19750-3
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/22214-6
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/01777-5
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2020/09587-8
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 3007/2014 - PROCAD
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88887.504861/2020-00
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Finance Code 001
Informations de copyright
© 2022. Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Feng W, Newbigging AM, Le C, Pang B, Peng H, Cao Y, Wu J, Abbas G, Song J, Wang D-B, Cui M, Tao J, Tyrrell DL, Zhang X-E, Zhang H, Le XC. Molecular diagnosis of COVID-19: challenges and research needs. Anal Chem. 2020;92:10196–209. https://doi.org/10.1021/acs.analchem.0c02060 .
doi: 10.1021/acs.analchem.0c02060
pubmed: 32573207
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical sensing directions for next-generation healthcare: trends, challenges, and frontiers. Anal Chem. 2021;93:167–83. https://doi.org/10.1021/acs.analchem.0c04378 .
doi: 10.1021/acs.analchem.0c04378
pubmed: 33174738
Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2021;178:113029. https://doi.org/10.1016/j.bios.2021.113029 .
doi: 10.1016/j.bios.2021.113029
pubmed: 33515985
pmcid: 7826012
Brazaca LC, dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Abarza Muñoz RA, Bonacin JA, Janegitz BC, Carrilho E. Biosensing strategies for the electrochemical detection of viruses and viral diseases – a review. Anal Chim Acta. 2021;1159:338384. https://doi.org/10.1016/j.aca.2021.338384 .
doi: 10.1016/j.aca.2021.338384
pubmed: 33867035
pmcid: 9186435
World Health Organization (2020) Coronavirus disease 2019 (COVID-19): situation report, 52. https://apps.who.int/iris/handle/10665/331476 . Accessed 12 Mar 2021
Hashemi SA, GolabBehbahan NG, Bahrani S, Mousavi SM, Gholami A, Ramakrishna S, Firoozsani M, Moghadami M, Lankarani KB, Omidifar N. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens Bioelectron. 2021;171:112731. https://doi.org/10.1016/j.bios.2020.112731 .
doi: 10.1016/j.bios.2020.112731
pubmed: 33075725
Ji T, Liu Z, Wang G, Guo X, Akbar khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q. Detection of COVID-19: a review of the current literature and future perspectives. Biosens Bioelectron. 2020;166:112455. https://doi.org/10.1016/j.bios.2020.112455 .
doi: 10.1016/j.bios.2020.112455
pubmed: 32739797
pmcid: 7371595
Fabiani L, Saroglia M, Galatà G, De Santis R, Fillo S, Luca V, Faggioni G, D’Amore N, Regalbuto E, Salvatori P, Terova G, Moscone D, Lista F, Arduini F. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron. 2021;171:112686. https://doi.org/10.1016/j.bios.2020.112686 .
doi: 10.1016/j.bios.2020.112686
pubmed: 33086175
Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chailapakul O, Chaiyo S. Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron. 2021;176:112912. https://doi.org/10.1016/j.bios.2020.112912 .
doi: 10.1016/j.bios.2020.112912
pubmed: 33358057
Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, Lee C-S, Jun S, Park D, Kim HG, Kim S-J, Lee J-O, Kim BT, Park EC, Il KS. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–42. https://doi.org/10.1021/acsnano.0c02823 .
doi: 10.1021/acsnano.0c02823
pubmed: 32293168
Alanazi K, Garcia Cruz A, Di Masi S, Voorhaar A, Ahmad OS, Cowen T, Piletska E, Langford N, Coats TJ, Sims MR, Piletsky SA. Disposable paracetamol sensor based on electroactive molecularly imprinted polymer nanoparticles for plasma monitoring. Sensors Actuators B Chem. 2021;329:129128. https://doi.org/10.1016/j.snb.2020.129128 .
doi: 10.1016/j.snb.2020.129128
Martins G, Gogola JL, Budni LH, Janegitz BC, Marcolino-Junior LH, Bergamini MF. 3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal Chim Acta. 2021;1147:30–7. https://doi.org/10.1016/j.aca.2020.12.014 .
doi: 10.1016/j.aca.2020.12.014
pubmed: 33485583
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron. 2020;159:112214. https://doi.org/10.1016/j.bios.2020.112214 .
doi: 10.1016/j.bios.2020.112214
pubmed: 32364936
pmcid: 7152911
García-Miranda Ferrari A, Rowley-Neale SJ, Banks CE. Screen-printed electrodes: transitioning the laboratory in-to-the field. Talanta Open. 2021;3:100032. https://doi.org/10.1016/j.talo.2021.100032 .
doi: 10.1016/j.talo.2021.100032
Paschoalino WJ, Kogikoski S Jr, Barragan JTC, Giarola JF, Cantelli L, Rabelo TM, Pessanha TM, Kubota LT. Emerging considerations for the future development of electrochemical paper-based analytical devices. ChemElectroChem. 2019;6:10–30. https://doi.org/10.1002/celc.201800677 .
doi: 10.1002/celc.201800677
Du CX, Han L, Dong SL, Li LH, Wei Y. A novel procedure for fabricating flexible screen-printed electrodes with improved electrochemical performance. IOP Conf Ser Mater Sci Eng. 2016;137:12060. https://doi.org/10.1088/1757-899x/137/1/012060 .
doi: 10.1088/1757-899x/137/1/012060
Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal Chem. 2009;81:5821–6.
doi: 10.1021/ac9007573
Ibáñez-Redín G, Wilson D, Gonçalves D, Oliveira ON. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci. 2018;515:101–8. https://doi.org/10.1016/j.jcis.2017.12.085 .
doi: 10.1016/j.jcis.2017.12.085
pubmed: 29331776
Wang S, Liu N, Yang C, Liu W, Su J, Li L, Yang C, Gao Y. Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv. 2015;5:85799–805. https://doi.org/10.1039/C5RA16724H .
doi: 10.1039/C5RA16724H
Martins TS, Bott-Neto JL, Oliveira ON Jr, Machado SAS. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples. J Electroanal Chem. 2021;882:114985. https://doi.org/10.1016/j.jelechem.2021.114985 .
doi: 10.1016/j.jelechem.2021.114985
Escamilla-Gómez V, Hernández-Santos D, González-García MB, Pingarrón-Carrazón JM, Costa-García A. Simultaneous detection of free and total prostate specific antigen on a screen-printed electrochemical dual sensor. Biosens Bioelectron. 2009;24:2678–83. https://doi.org/10.1016/j.bios.2009.01.043 .
doi: 10.1016/j.bios.2009.01.043
pubmed: 19261459
Narakathu BB, Devadas MS, Reddy ASG, Eshkeiti A, Moorthi A, Fernando IR, Miller BP, Ramakrishna G, Sinn E, Joyce M, Rebros M, Rebrosova E, Mezei G, Atashbar MZ. Novel fully screen printed flexible electrochemical sensor for the investigation of electron transfer between thiol functionalized viologen and gold clusters. Sensors Actuators B Chem. 2013;176:768–74. https://doi.org/10.1016/j.snb.2012.10.069 .
doi: 10.1016/j.snb.2012.10.069
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron. 2021;175:112836. https://doi.org/10.1016/j.bios.2020.112836 .
doi: 10.1016/j.bios.2020.112836
pubmed: 33272868
Kumar A, Gonçalves JM, Sukeri A, Araki K, Bertotti M. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors Actuators B Chem. 2018;263:237–47. https://doi.org/10.1016/j.snb.2018.02.125 .
doi: 10.1016/j.snb.2018.02.125
Gupta P, Goyal RN, Shim Y-B. Simultaneous analysis of dopamine and 5-hydroxyindoleacetic acid at nanogold modified screen printed carbon electrodes. Sensors Actuators B Chem. 2015;213:72–81. https://doi.org/10.1016/j.snb.2015.02.066 .
doi: 10.1016/j.snb.2015.02.066
Satyanarayana M, Goud KY, Reddy KK, Gobi KV. Biopolymer stabilized nanogold particles on carbon nanotube support as sensing platform for electrochemical detection of 5-fluorouracil in-vitro. Electrochim Acta. 2015;178:608–16. https://doi.org/10.1016/j.electacta.2015.08.036 .
doi: 10.1016/j.electacta.2015.08.036
Cherevko S, Chung C-H. Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun. 2011;13:16–9. https://doi.org/10.1016/j.elecom.2010.11.001 .
doi: 10.1016/j.elecom.2010.11.001
Kumar A, Furtado VL, Gonçalves JM, Bannitz-Fernandes R, Netto LES, Araki K, Bertotti M. Amperometric microsensor based on nanoporous gold for ascorbic acid detection in highly acidic biological extracts. Anal Chim Acta. 2020;1095:61–70. https://doi.org/10.1016/j.aca.2019.10.022 .
doi: 10.1016/j.aca.2019.10.022
pubmed: 31864631
Raymundo-Pereira PA, Gomes NO, Machado SAS, Oliveira ON. Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J Electroanal Chem. 2019;848:113319. https://doi.org/10.1016/j.jelechem.2019.113319 .
doi: 10.1016/j.jelechem.2019.113319
Hernández-Saravia LP, Sukeri A, Bertotti M. Fabrication of nanoporous gold-islands via hydrogen bubble template: an efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. Int J Hydrogen Energy. 2019;44:15001–8. https://doi.org/10.1016/j.ijhydene.2019.04.186 .
doi: 10.1016/j.ijhydene.2019.04.186
Soares JC, Soares AC, Angelim MKSC, Proença-Modena JL, Moraes-Vieira PM, Mattoso LHC, Oliveira ON Jr. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta. 2022;239:123076. https://doi.org/10.1016/j.talanta.2021.123076 .
doi: 10.1016/j.talanta.2021.123076
pubmed: 34876273
Zaccariotto GC, Silva MKL, Rocha GS, Cesarino I (2021) A novel method for the detection of SARS-CoV-2 based on graphene-impedimetric immunosensor. Materials 14
Brazaca LC, Bramorski CB, Cancino-Bernardi J, da Silveira C-M, Markus RP, Janegitz BC, Zucolotto V. An antibody-based platform for melatonin quantification. Colloids Surfaces B Biointerfaces. 2018;171:94–100. https://doi.org/10.1016/j.colsurfb.2018.07.006 .
doi: 10.1016/j.colsurfb.2018.07.006
pubmed: 30015143
Brazaca LC, Janegitz BC, Cancino-Bernardi J, Zucolotto V. Transmembrane protein-based electrochemical biosensor for adiponectin hormone quantification. ChemElectroChem. 2016;3:1006–11. https://doi.org/10.1002/celc.201600099 .
doi: 10.1002/celc.201600099
Mehmandoust M, Gumus ZP, Soylak M, Erk N. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample. Talanta. 2022;240:123211. https://doi.org/10.1016/j.talanta.2022.123211 .
doi: 10.1016/j.talanta.2022.123211
pubmed: 34999319
pmcid: 8730781
Mojsoska B, Larsen S, Olsen DA, Madsen JS, Brandslund I, Alatraktchi FA (2021) Rapid SARS-CoV-2 detection using electrochemical immunosensor. Sensors 21
Zamzami MA, Rabbani G, Ahmad A, Basalah AA, Al-Sabban WH, Nate Ahn S, Choudhry H. Carbon nanotube field-effect transistor (CNT-FET)-based biosensor for rapid detection of SARS-CoV-2 (COVID-19) surface spike protein S1. Bioelectrochemistry. 2022;143:107982. https://doi.org/10.1016/j.bioelechem.2021.107982 .
doi: 10.1016/j.bioelechem.2021.107982
pubmed: 34715586
Zhang M, Li X, Pan J, Zhang Y, Zhang L, Wang C, Yan X, Liu X, Lu G. Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor. Biosens Bioelectron. 2021;190:113421. https://doi.org/10.1016/j.bios.2021.113421 .
doi: 10.1016/j.bios.2021.113421
pubmed: 34134070
pmcid: 8186945
Zhao J, Fu Z, Li H, Xiong Y, Cai S, Wang C, Chen Y, Han N, Yang R. Magnet-assisted electrochemical immunosensor based on surface-clean Pd-Au nanosheets for sensitive detection of SARS-CoV-2 spike protein. Electrochim Acta. 2022;404:139766. https://doi.org/10.1016/j.electacta.2021.139766 .
doi: 10.1016/j.electacta.2021.139766
pubmed: 34961798
Stefano JS, Guterres e Silva LR, Rocha RG, Brazaca LC, Richter EM, Abarza Muñoz RA, Janegitz BC. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: towards the detection of SARS-CoV-2. Anal Chim Acta. 2022;1191:339372. https://doi.org/10.1016/j.aca.2021.339372 .
doi: 10.1016/j.aca.2021.339372
pubmed: 35033268
Anderson DJ. Determination of the lower limit of detection. Clin Chem. 1989;35:2152–3. https://doi.org/10.1093/clinchem/35.10.2152 .
doi: 10.1093/clinchem/35.10.2152
pubmed: 2619804
Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MHO, Gobbi AL, Machado SAS, Oliveira ON. A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: synergy in hybrid Pt/Au surfaces. Biosens Bioelectron. 2016;86:369–76. https://doi.org/10.1016/j.bios.2016.06.053 .
doi: 10.1016/j.bios.2016.06.053
pubmed: 27399934
Carbone M, Nesticò A, Bellucci N, Micheli L, Palleschi G. Enhanced performances of sensors based on screen printed electrodes modified with nanosized NiO particles. Electrochim Acta. 2017;246:580–7. https://doi.org/10.1016/j.electacta.2017.06.074 .
doi: 10.1016/j.electacta.2017.06.074
Karra S, Wooten M, Griffith W, Gorski W. Morphology of gold nanoparticles and electrocatalysis of glucose oxidation. Electrochim Acta. 2016;218:8–14. https://doi.org/10.1016/j.electacta.2016.09.097 .
doi: 10.1016/j.electacta.2016.09.097
pubmed: 28479607
pmcid: 5417688
Varodi C, Pogacean F, Coros M, Rosu M-C, Stefan-van Staden R-I, Gal E, Tudoran L-B, Pruneanu S, Mirel S (2019) Detection of 8-hydroxy-2′-deoxyguanosine biomarker with a screen-printed electrode modified with graphene. Sensors 19
Huang M, Li H, He H, Zhang X, Wang S. An electrochemical impedance sensor for simple and specific recognition of G-G mismatches in DNA. Anal Methods. 2016;8:7413–9. https://doi.org/10.1039/C6AY01705C .
doi: 10.1039/C6AY01705C
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020;12:244.
doi: 10.3390/v12020244
Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J Mol Biol. 2020;432:3309–25. https://doi.org/10.1016/j.jmb.2020.04.009 .
doi: 10.1016/j.jmb.2020.04.009
pubmed: 32320687
pmcid: 7166309
Sino Biological (2021) SARS-CoV/SARS-CoV-2 spike antibody, chimeric MAb. https://www.sinobiological.com/antibodies/cov-spike-40150-d006 . Accessed 17 May 2021
Bates TA, Weinstein JB, Farley S, Leier HC, Messer WB, Tafesse FG. Cross-reactivity of SARS-CoV structural protein antibodies against SARS-CoV-2. Cell Rep. 2021;34. https://doi.org/10.1016/j.celrep.2021.108737 .
Dave PK, Rojas-Cessa R, Dong Z, Umpaichitra V (2021) Survey of saliva components and virus sensors for prevention of COVID-19 and infectious diseases. Biosensors 11
Chang M-S, Lu Y-T, Ho S-T, Wu C-C, Wei T-Y, Chen C-J, Hsu Y-T, Chu P-C, Chen C-H, Chu J-M, Jan Y-L, Hung C-C, Fan C-C, Yang Y-C. Antibody detection of SARS-CoV spike and nucleocapsid protein. Biochem Biophys Res Commun. 2004;314:931–6. https://doi.org/10.1016/j.bbrc.2003.12.195 .
doi: 10.1016/j.bbrc.2003.12.195
pubmed: 14751221
pmcid: 7111193
Haynes LM, Miao C, Harcourt JL, Montgomery JM, Le MQ, Dryga SA, Kamrud KI, Rivers B, Babcock GJ, Oliver JB, Comer JA, Reynolds M, Uyeki TM, Bausch D, Ksiazek T, Thomas W, Alterson H, Smith J, Ambrosino DM, Anderson LJ. Recombinant protein-based assays for detection of antibodies to severe acute respiratory syndrome coronavirus spike and nucleocapsid proteins. Clin Vaccine Immunol. 2007;14:331–3. https://doi.org/10.1128/CVI.00351-06 .
doi: 10.1128/CVI.00351-06
pubmed: 17229882
pmcid: 1828864