The aftereffect of the ensemble average of facial expressions on subsequent facial expression recognition.
Adaptation
Aftereffect
Ensemble perception
Facial expression
Priming
Journal
Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384
Informations de publication
Date de publication:
Apr 2022
Apr 2022
Historique:
accepted:
04
11
2021
pubmed:
17
2
2022
medline:
14
4
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
An ensemble or statistical summary can be extracted from facial expressions presented in different spatial locations simultaneously. However, how such complicated objects are represented in the mind is not clear. It is known that the aftereffect of facial expressions, in which prolonged viewing of facial expressions biases the perception of subsequent facial expressions of the same category, occurs only when a visual representation is formed. Using this methodology, we examined whether an ensemble can be represented with visualized information. Experiment 1 revealed that the presentation of multiple facial expressions biased the perception of subsequent facial expressions to less happy as much as the presentation of a single face did. Experiment 2 compared the presentation of faces comprising strong and weak intensities of emotional expressions with an individual face as the adaptation stimulus. The results indicated that the perceptual biases were found after the presentation of four faces and a strong single face, but not after the weak single face presentation. Experiment 3 employed angry expressions, a distinct category from the test expression used as an adaptation stimulus; no aftereffect was observed. Finally, Experiment 4 clearly demonstrated the perceptual bias with a higher number of faces. Altogether, these results indicate that an ensemble average extracted from multiple faces leads to the perceptual bias, and this effect is similar in terms of its properties to that of a single face. This supports the idea that an ensemble of faces is represented with visualized information as a single face.
Identifiants
pubmed: 35169990
doi: 10.3758/s13414-021-02407-w
pii: 10.3758/s13414-021-02407-w
pmc: PMC9001283
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
815-828Informations de copyright
© 2022. The Author(s).
Références
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. https://doi.org/10.1163/156856897X00357
doi: 10.1163/156856897X00357
pubmed: 9176952
Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology. https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
Burton, N., Jeffery, L., Calder, A. J., & Rhodes, G. (2015). How is facial expression coded? Journal of Vision, 15(1), 1–13. https://doi.org/10.1167/15.1.1
doi: 10.1167/15.1.1
pubmed: 26067175
Burton, N., Jeffery, L., Bonner, J., & Rhodes, G. (2016). The timecourse of expression aftereffects. Journal of Vision, 16(15), 1. https://doi.org/10.1167/16.15.1
doi: 10.1167/16.15.1
pubmed: 27918785
Calder, A. J., Keane, J., Young, A. W., & Dean, M. (2000). Configural information in facial expression perception. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 527–551. https://doi.org/10.1037/0096-1523.26.2.527
doi: 10.1037/0096-1523.26.2.527
pubmed: 10811161
Corbett, J. E., Wurnitsch, N., Schwartz, A., & Whitney, D. (2012). An aftereffect of adaptation to mean size. Visual Cognition, 20(2), 211–231. https://doi.org/10.1080/13506285.2012.657261
doi: 10.1080/13506285.2012.657261
Davidoff, J., Davies, I., & Roberson, D. (1999). Colour categories in a stone-age tribe. Nature, 398(6724). https://doi.org/10.1038/18335
Ekman, P., & Friesen, W. V. (1978). Manual for the facial action coding system. Palo Alto, Consulting Psychologists Press.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
doi: 10.3758/BF03193146
pubmed: 17695343
Fox, C. J., & Barton, J. J. S. (2007). What is adapted in face adaptation? The neural representations of expression in the human visual system. Brain Research, 1127(1), 80–89. https://doi.org/10.1016/j.brainres.2006.09.104
doi: 10.1016/j.brainres.2006.09.104
pubmed: 17109830
Gibson, J. J., & Radner, M. (1937). Adaptation, after-effect and contrast in the perception of tilted lines. Journal of Experimental Psychology, 20(5), 453–467. https://doi.org/10.1037/h0059826
doi: 10.1037/h0059826
Haberman, J., & Whitney, D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17(17), PR751–R753. https://doi.org/10.1016/j.cub.2007.06.039
doi: 10.1016/j.cub.2007.06.039
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 718–734. https://doi.org/10.1037/a0013899
doi: 10.1037/a0013899
pubmed: 19485687
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0
doi: 10.1016/S1364-6613(00)01482-0
pubmed: 10827445
Hong, S. W., & Yoon, K. L. (2018). Intensity dependence in high-level facial expression adaptation aftereffect. Psychonomic Bulletin & Review, 25(3), 1035–1042. https://doi.org/10.3758/s13423-017-1336-2
doi: 10.3758/s13423-017-1336-2
Hsu, S., & Young, A. (2004). Adaptation effects in facial expression recognition. Visual Cognition, 11(7), 871–899. https://doi.org/10.1080/13506280444000030
doi: 10.1080/13506280444000030
JASP Team. (2019). JASP [Computer software]. Retrieved from https://jasp-stats.org . Accessed 30 Nov 2021.
Johnston, V. S. (2006). Mate choice decisions: The role of facial beauty. Trends in Cognitive Sciences, 10(1), 9–13. https://doi.org/10.1016/j.tics.2005.11.003
doi: 10.1016/j.tics.2005.11.003
pubmed: 16311066
Juricevic, I., & Webster, M. A. (2012). Selectivity of face aftereffects for expressions and anti-expressions. Frontiers in Psychology, 3(4), 1–10. https://doi.org/10.3389/fpsyg.2012.00004
doi: 10.3389/fpsyg.2012.00004
Kovács, G., Cziraki, C., Vidnyánszky, Z., Schweinberger, S. R., & Greenlee, M. W. (2008). Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. NeuroImage, 43(1), 154–164. https://doi.org/10.1016/j.neuroimage.2008.06.042
doi: 10.1016/j.neuroimage.2008.06.042
Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4(1), 89–94. https://doi.org/10.1038/82947
doi: 10.1038/82947
pubmed: 11135650
Leopold, D. A., Rhodes, G., Müller, K.-M., & Jeffery, L. (2005). The dynamics of visual adaptation to faces. Proceedings of the Royal Society B: Biological Sciences, 272(1566), 897–904. https://doi.org/10.1098/rspb.2004.3022
doi: 10.1098/rspb.2004.3022
pubmed: 16024343
pmcid: 1564098
Mei, G., Dong, X., & Bao, M. (2017). The timescale of adaptation at early and mid-level stages of visual processing. Journal of Vision, 17(1), 1–7. https://doi.org/10.1167/17.1.1
doi: 10.1167/17.1.1
pubmed: 28055080
Moriya, J., Tanno, Y., & Sugiura, Y. (2013). Repeated short presentations of morphed facial expressions change recognition and evaluation of facial expressions. Psychological Research, 77(6), 698–707. https://doi.org/10.1007/s00426-012-0463-7
doi: 10.1007/s00426-012-0463-7
pubmed: 23179582
Nagy, K., Zimmer, M., Greenlee, M. W., & Kovács, G. (2012). Neural correlates of after-effects caused by adaptation to multiple face displays. Experimental Brain Research, 220(3/4), 261–275. https://doi.org/10.1007/s00221-012-3135-3
doi: 10.1007/s00221-012-3135-3
pubmed: 22673875
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. https://doi.org/10.1163/156856897X00366
doi: 10.1163/156856897X00366
pubmed: 9176953
Rhodes, G., Jeffery, L., Clifford, C. W. G., & Leopold, D. A. (2007). The timecourse of higher-level face aftereffects. Vision Research, 47(17), 2291–2296. https://doi.org/10.1016/j.visres.2007.05.012
doi: 10.1016/j.visres.2007.05.012
pubmed: 17619045
Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology. https://doi.org/10.1016/j.jmp.2012.08.001
Sou, K. L., & Xu, H. (2019). Brief facial emotion aftereffect occurs earlier for angry than happy adaptation. Vision Research, 162, 35–42. https://doi.org/10.1016/j.visres.2019.07.002
doi: 10.1016/j.visres.2019.07.002
pubmed: 31325461
Ueda, Y., & Yoshikawa, S. (2018). Beyond personality traits: Which facial expressions imply dominance in two-person interaction scenes. Emotion, 18(6). https://doi.org/10.1037/emo0000286
Ueda, Y., Nunoi, M., & Yoshikawa, S. (2019). Development and Validation of the Kokoro Research Center (KRC) Facial Expression Database. Psychologia, 61(4), 221–240. https://doi.org/10.2117/psysoc.2019-a009
doi: 10.2117/psysoc.2019-a009
Webster, M. A. (2011). Adaptation and visual coding. Journal of Vision, 11(5), 1–23. https://doi.org/10.1167/11.5.3
doi: 10.1167/11.5.3
Webster, M. A., Kaping, D., Mizokami, Y., & Duhamel, P. (2004). Adaptation to natural facial categories. Nature, 428(6982), 557–561. https://doi.org/10.1038/nature02420
doi: 10.1038/nature02420
pubmed: 15058304
Ying, H., & Xu, H. (2017). Adaptation reveals that facial expression averaging occurs during rapid serial presentation. Journal of Vision, 17(1), 1–19. https://doi.org/10.1167/17.1.15
doi: 10.1167/17.1.15
Ying, H., Burns, E. J., Choo, A. M., & Xu, H. (2020). Temporal and spatial ensemble statistics are formed by distinct mechanisms. Cognition, 195, 104128. https://doi.org/10.1016/j.cognition.2019.104128
doi: 10.1016/j.cognition.2019.104128
pubmed: 31731114