Predicting machine's performance record using the stacked long short-term memory (LSTM) neural networks.
long short-term memory networks (LSTM)
predictive time series
quality control
radiotherapy
Journal
Journal of applied clinical medical physics
ISSN: 1526-9914
Titre abrégé: J Appl Clin Med Phys
Pays: United States
ID NLM: 101089176
Informations de publication
Date de publication:
Mar 2022
Mar 2022
Historique:
revised:
23
11
2021
received:
22
08
2021
accepted:
21
01
2022
pubmed:
17
2
2022
medline:
12
3
2022
entrez:
16
2
2022
Statut:
ppublish
Résumé
The record of daily quality control (QC) items shows machine performance patterns and potentially provides warning messages for preventive actions. This study developed a neural network model that could predict the record and trend of data variations quantitively. The record of 24 QC items for a radiotherapy machine was investigated in our institute. The QC records were collected daily for 3 years. The stacked long short-term memory (LSTM) model was used to develop the neural network model. A total of 867 records were collected to predict the record for the next 5 days. To compare the stacked LSTM, the autoregressive integrated moving average model (ARIMA) was developed on the same data set. The accuracy of the model was quantified by the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determination (R The mean MAE, RMSE, and In this study, the stacked LSTM model can accurately predict the record and trend of QC items. Moreover, the stacked LSTM model is robust when applied to another radiotherapy machine. Predicting future performance record will foresee possible machine failure, allowing early machine maintenance and reducing unscheduled machine downtime.
Identifiants
pubmed: 35170838
doi: 10.1002/acm2.13558
pmc: PMC8906230
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13558Informations de copyright
© 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.
Références
Radiat Oncol. 2015 Apr 21;10:97
pubmed: 25896341
J Appl Clin Med Phys. 2017 May;18(3):56-66
pubmed: 28419702
Med Phys. 2009 Sep;36(9):4197-212
pubmed: 19810494
Neural Comput. 2000 Oct;12(10):2451-71
pubmed: 11032042
J Appl Clin Med Phys. 2022 Mar;23(3):e13558
pubmed: 35170838
J Appl Clin Med Phys. 2017 Jan;18(1):139-150
pubmed: 28291921
IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2222-2232
pubmed: 27411231
Ann N Y Acad Sci. 2017 Jan;1387(1):84-94
pubmed: 27627049
J Appl Clin Med Phys. 2018 Nov;19(6):68-78
pubmed: 30178521
Neural Comput. 2019 Jul;31(7):1235-1270
pubmed: 31113301
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
Radiother Oncol. 2020 Dec;153:79-87
pubmed: 32585236
Phys Med Biol. 2019 Apr 10;64(8):085010
pubmed: 30917344
J Appl Clin Med Phys. 2020 Aug;21(8):73-82
pubmed: 32543097
Int J Med Phys Clin Eng Radiat Oncol. 2015 Nov;4(4):290-299
pubmed: 27547595
J Appl Clin Med Phys. 2017 May;18(3):200-206
pubmed: 28332342