Monitoring Virus-Induced Stress Granule Dynamics Using Long-Term Live-Cell Imaging.

Fluorescent reporter virus Hepatitis C virus Integrated stress response Long-term live-cell imaging Spinning disc confocal microscopy Stress granule dynamics Stress granule reporter cell line Virus infection

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2022
Historique:
entrez: 16 2 2022
pubmed: 17 2 2022
medline: 19 2 2022
Statut: ppublish

Résumé

The integrated stress response is a highly regulated signaling cascade that allows cells to react to a variety of external and internal stimuli. Activation of different stress-responsive kinases leads to the phosphorylation of their common downstream target, the eukaryotic translation initiation factor 2 alpha (eIF2α), which is a critical component of functional translation preinitiation complexes. As a consequence, stalled ribonucleoprotein complexes accumulate in the cytoplasm and condense into microscopically visible cytoplasmic stress granules (SGs). Over the past years, numerous microscopy approaches have been developed to study the spatiotemporal control of SG formation in response to a variety of stressors. Here, we apply long-term live-cell microscopy to monitor the dynamic cellular stress response triggered by infection with chronic hepatitis C virus (HCV) at single-cell level and study the behavior of infected cells that repeatedly switch between a stressed and unstressed state. We describe in detail the engineering of fluorescent SG-reporter cells expressing enhanced yellow fluorescent protein (YFP)-tagged T cell internal antigen 1 (TIA-1) using lentiviral delivery, as well as the production of mCherry-tagged HCV trans-complemented particles, which allow live tracking of SG assembly and disassembly, SG number and size in single infected cells over time.

Identifiants

pubmed: 35171489
doi: 10.1007/978-1-0716-1975-9_20
doi:

Substances chimiques

Eukaryotic Initiation Factor-2 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

325-348

Informations de copyright

© 2022. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845. https://doi.org/10.1038/nrg3055
doi: 10.1038/nrg3055 pubmed: 22048664
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM (2016) The integrated stress response. EMBO Rep 17(10):1374–1395. https://doi.org/10.15252/embr.201642195
doi: 10.15252/embr.201642195 pubmed: 27629041 pmcid: 5048378
Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S (2016) Integrated stress response of vertebrates is regulated by four eIF2alpha kinases. Sci Rep 6:32886. https://doi.org/10.1038/srep32886
doi: 10.1038/srep32886 pubmed: 27633668 pmcid: 5025754
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A (2020) Dance with the devil: stress granules and signaling in antiviral responses. Viruses 12(9):984. https://doi.org/10.3390/v12090984
doi: 10.3390/v12090984 pmcid: 7552005
Hofmann S, Kedersha N, Anderson P, Ivanov P (2021) Molecular mechanisms of stress granule assembly and disassembly. Biochim Biophys Acta, Mol Cell Res 1868(1):118876. https://doi.org/10.1016/j.bbamcr.2020.118876
doi: 10.1016/j.bbamcr.2020.118876
Fujimura K, Katahira J, Kano F, Yoneda Y, Murata M (2009) Microscopic dissection of the process of stress granule assembly. Biochim Biophys Acta 1793(11):1728–1737. https://doi.org/10.1016/j.bbamcr.2009.08.010
doi: 10.1016/j.bbamcr.2009.08.010 pubmed: 19733198
Fujimura K, Kano F, Murata M (2008) Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment. Exp Cell Res 314(3):543–553. https://doi.org/10.1016/j.yexcr.2007.10.024
doi: 10.1016/j.yexcr.2007.10.024 pubmed: 18164289
Gao X, Fu X, Song J, Zhang Y, Cui X, Su C, Ge L, Shao J, Xin L, Saarikettu J, Mei M, Yang X, Wei M, Silvennoinen O, Yao Z, He J, Yang J (2015) Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics. FEBS J 282(5):874–890. https://doi.org/10.1111/febs.13186
doi: 10.1111/febs.13186 pubmed: 25559396
Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P (2000) Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151(6):1257–1268. https://doi.org/10.1083/jcb.151.6.1257
doi: 10.1083/jcb.151.6.1257 pubmed: 11121440 pmcid: 2190599
Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81. https://doi.org/10.1016/S0076-6879(07)31005-7
doi: 10.1016/S0076-6879(07)31005-7 pubmed: 17923231
Kedersha N, Tisdale S, Hickman T, Anderson P (2008) Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol 448:521–552. https://doi.org/10.1016/S0076-6879(08)02626-8
doi: 10.1016/S0076-6879(08)02626-8 pubmed: 19111193
Ruggieri A, Dazert E, Metz P, Hofmann S, Bergeest JP, Mazur J, Bankhead P, Hiet MS, Kallis S, Alvisi G, Samuel CE, Lohmann V, Kaderali L, Rohr K, Frese M, Stoecklin G, Bartenschlager R (2012) Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 12(1):71–85. https://doi.org/10.1016/j.chom.2012.05.013
doi: 10.1016/j.chom.2012.05.013 pubmed: 22817989
Nadezhdina ES, Lomakin AJ, Shpilman AA, Chudinova EM, Ivanov PA (2010) Microtubules govern stress granule mobility and dynamics. Biochim Biophys Acta 1803(3):361–371. https://doi.org/10.1016/j.bbamcr.2009.12.004
doi: 10.1016/j.bbamcr.2009.12.004 pubmed: 20036288
Kedersha NL, Gupta M, Li W, Miller I, Anderson P (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147(7):1431–1442. https://doi.org/10.1083/jcb.147.7.1431
doi: 10.1083/jcb.147.7.1431 pubmed: 10613902 pmcid: 2174242
Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K (2003) The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17(11):1573–1575. https://doi.org/10.1096/fj.02-1184fje
doi: 10.1096/fj.02-1184fje pubmed: 12824288
Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE (2010) Stable formation of compositionally unique stress granules in virus-infected cells. J Virol 84(7):3654–3665. https://doi.org/10.1128/JVI.01320-09
doi: 10.1128/JVI.01320-09 pubmed: 20106928
Brocard M, Iadevaia V, Klein P, Hall B, Lewis G, Lu J, Burke J, Willcocks MM, Parker R, Goodfellow IG, Ruggieri A, Locker N (2020) Norovirus infection results in eIF2alpha independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation. PLoS Pathog 16(1):e1008250. https://doi.org/10.1371/journal.ppat.1008250
doi: 10.1371/journal.ppat.1008250 pubmed: 31905230 pmcid: 6964919
Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP (2020) Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181(2):306–324.e28. https://doi.org/10.1016/j.cell.2020.03.050
doi: 10.1016/j.cell.2020.03.050 pubmed: 32302570 pmcid: 7816278
Tourriere H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, Tazi J (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160(6):823–831. https://doi.org/10.1083/jcb.200212128
doi: 10.1083/jcb.200212128 pubmed: 12642610 pmcid: 2173781
Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M (2013) Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18(2):135–146. https://doi.org/10.1111/gtc.12023
doi: 10.1111/gtc.12023 pubmed: 23279204
Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P (2004) MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23(6):1313–1324. https://doi.org/10.1038/sj.emboj.7600163
doi: 10.1038/sj.emboj.7600163 pubmed: 15014438 pmcid: 381421
Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884. https://doi.org/10.1083/jcb.200502088
doi: 10.1083/jcb.200502088 pubmed: 15967811 pmcid: 2171635
Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, Schrader JW (2007) Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol Cell Biol 27(6):2324–2342. https://doi.org/10.1128/MCB.02300-06
doi: 10.1128/MCB.02300-06 pubmed: 17210633 pmcid: 1820512
Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15(12):5383–5398. https://doi.org/10.1091/mbc.e04-08-0715
doi: 10.1091/mbc.e04-08-0715 pubmed: 15371533 pmcid: 532018
Thomas MG, Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL (2009) Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci 122(Pt 4):563–573. https://doi.org/10.1242/jcs.038208
doi: 10.1242/jcs.038208 pubmed: 19193871 pmcid: 2714435
Lee SH, Kim S, Hur JK (2018) CRISPR and target-specific DNA endonucleases for efficient DNA |knock-in in eukaryotic genomes. Mol Cells 41(11):943–952. https://doi.org/10.14348/molcells.2018.0408
doi: 10.14348/molcells.2018.0408 pubmed: 30486613 pmcid: 6277560
Bukhari H, Muller T (2019) Endogenous fluorescence tagging by CRISPR. Trends Cell Biol 29(11):912–928. https://doi.org/10.1016/j.tcb.2019.08.004
doi: 10.1016/j.tcb.2019.08.004 pubmed: 31522960
Wang R, Jiang X, Bao P, Qin M, Xu J (2019) Circadian control of stress granules by oscillating EIF2alpha. Cell Death Dis 10(3):215. https://doi.org/10.1038/s41419-019-1471-y
doi: 10.1038/s41419-019-1471-y pubmed: 30833545 pmcid: 6399301
Wang R, Zhang H, Du J, Xu J (2019) Heat resilience in embryonic zebrafish revealed using an in vivo stress granule reporter. J Cell Sci 132(20):jcs234807. https://doi.org/10.1242/jcs.234807
doi: 10.1242/jcs.234807 pubmed: 31558681 pmcid: 6826007
Belyy V, Tran NH, Walter P (2020) Quantitative microscopy reveals dynamics and fate of clustered IRE1alpha. Proc Natl Acad Sci U S A 117(3):1533–1542. https://doi.org/10.1073/pnas.1915311117
doi: 10.1073/pnas.1915311117 pubmed: 31871156
Schaller T, Appel N, Koutsoudakis G, Kallis S, Lohmann V, Pietschmann T, Bartenschlager R (2007) Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 81(9):4591–4603. https://doi.org/10.1128/JVI.02144-06
doi: 10.1128/JVI.02144-06 pubmed: 17301154 pmcid: 1900174
Schmid B, Rinas M, Ruggieri A, Acosta EG, Bartenschlager M, Reuter A, Fischl W, Harder N, Bergeest JP, Flossdorf M, Rohr K, Hofer T, Bartenschlager R (2015) Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2'-O-methylation mutant. PLoS Pathog 11(12):e1005345. https://doi.org/10.1371/journal.ppat.1005345
doi: 10.1371/journal.ppat.1005345 pubmed: 26720415 pmcid: 4697809
Kanai Y, Kawagishi T, Nouda R, Onishi M, Pannacha P, Nurdin JA, Nomura K, Matsuura Y, Kobayashi T (2019) Development of stable rotavirus reporter expression systems. J Virol 93(4):e01774-18. https://doi.org/10.1128/JVI.01774-18
doi: 10.1128/JVI.01774-18 pubmed: 30541830 pmcid: 6363997
Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J (1982) Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res 42(9):3858–3863
pubmed: 6286115
Steinmann E, Brohm C, Kallis S, Bartenschlager R, Pietschmann T (2008) Efficient trans-encapsidation of hepatitis C virus RNAs into infectious virus-like particles. J Virol 82(14):7034–7046. https://doi.org/10.1128/JVI.00118-08
doi: 10.1128/JVI.00118-08 pubmed: 18480457 pmcid: 2446957
Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267. https://doi.org/10.1126/science.272.5259.263
doi: 10.1126/science.272.5259.263 pubmed: 8602510
Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892. https://doi.org/10.1128/JVI.73.4.2886-2892.1999
doi: 10.1128/JVI.73.4.2886-2892.1999 pubmed: 10074136 pmcid: 104046
Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90(17):8033–8037. https://doi.org/10.1073/pnas.90.17.8033
doi: 10.1073/pnas.90.17.8033 pubmed: 8396259 pmcid: 47282
Kaul A, Woerz I, Meuleman P, Leroux-Roels G, Bartenschlager R (2007) Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J Virol 81(23):13168–13179. https://doi.org/10.1128/JVI.01362-07
doi: 10.1128/JVI.01362-07 pubmed: 17881454 pmcid: 2169131
van den Hoff MJ, Moorman AF, Lamers WH (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res 20(11):2902. https://doi.org/10.1093/nar/20.11.2902
doi: 10.1093/nar/20.11.2902 pubmed: 1614888 pmcid: 336954
Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX, Haubold C, Schiegg M, Ales J, Beier T, Rudy M, Eren K, Cervantes JI, Xu B, Beuttenmueller F, Wolny A, Zhang C, Koethe U, Hamprecht FA, Kreshuk A (2019) Ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232. https://doi.org/10.1038/s41592-019-0582-9
doi: 10.1038/s41592-019-0582-9 pubmed: 31570887
Aulas A, Fay MM, Szaflarski W, Kedersha N, Anderson P, Ivanov P (2017) Methods to classify cytoplasmic foci as mammalian stress granules. J Vis Exp (123):55656. https://doi.org/10.3791/55656
Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM (2005) Complete replication of hepatitis C virus in cell culture. Science 309(5734):623–626. https://doi.org/10.1126/science.1114016
doi: 10.1126/science.1114016 pubmed: 15947137
Thorn K (2017) Genetically encoded fluorescent tags. Mol Biol Cell 28(7):848–857. https://doi.org/10.1091/mbc.E16-07-0504
doi: 10.1091/mbc.E16-07-0504 pubmed: 28360214 pmcid: 5385933
Xue L, Karpenko IA, Hiblot J, Johnsson K (2015) Imaging and manipulating proteins in live cells through covalent labeling. Nat Chem Biol 11(12):917–923. https://doi.org/10.1038/nchembio.1959
doi: 10.1038/nchembio.1959 pubmed: 26575238
Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141(7):2770–2781. https://doi.org/10.1021/jacs.8b11134
doi: 10.1021/jacs.8b11134 pubmed: 30550714
Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16(4):277–278. https://doi.org/10.1038/s41592-019-0352-8
doi: 10.1038/s41592-019-0352-8 pubmed: 30886412
Jones CT, Catanese MT, Law LM, Khetani SR, Syder AJ, Ploss A, Oh TS, Schoggins JW, MacDonald MR, Bhatia SN, Rice CM (2010) Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 28(2):167–171. https://doi.org/10.1038/nbt.1604
doi: 10.1038/nbt.1604 pubmed: 20118917 pmcid: 2828266
McFadden MJ, Mitchell-Dick A, Vazquez C, Roder AE, Labagnara KF, McMahon JJ, Silver DL, Horner SM (2018) A fluorescent cell-based system for imaging Zika virus infection in real-time. Viruses 10(2):95. https://doi.org/10.3390/v10020095
doi: 10.3390/v10020095 pmcid: 5850402
Pahmeier F, Neufeldt CJ, Cerikan B, Prasad V, Pape C, Laketa V, Ruggieri A, Bartenschlager R, Cortese M (2020) A versatile reporter system to monitor virus infected cells and its application to dengue virus and SARS-CoV-2. J Virol 95(4):e01715–e01720. https://doi.org/10.1128/JVI.01715-20
doi: 10.1128/JVI.01715-20
Arias-Arias JL, MacPherson DJ, Hill ME, Hardy JA, Mora-Rodriguez R (2020) A fluorescence-activatable reporter of flavivirus NS2B-NS3 protease activity enables live imaging of infection in single cells and viral plaques. J Biol Chem 295(8):2212–2226. https://doi.org/10.1074/jbc.RA119.011319
doi: 10.1074/jbc.RA119.011319 pubmed: 31919100 pmcid: 7039541
Richman L, Meylan PR, Munoz M, Pinaud S, Mirkovitch J (2002) An adenovirus-based fluorescent reporter vector to identify and isolate HIV-infected cells. J Virol Methods 99(1–2):9–21. https://doi.org/10.1016/s0166-0934(01)00375-5
doi: 10.1016/s0166-0934(01)00375-5 pubmed: 11684299
Swick A, Baltes A, Yin J (2014) Visualizing infection spread: dual-color fluorescent reporting of virus-host interactions. Biotechnol Bioeng 111(6):1200–1209. https://doi.org/10.1002/bit.25170
doi: 10.1002/bit.25170 pubmed: 24338628
Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, Kohrer S, Hennies J, Schieber NL, Ronchi P, Mizzon G, Romero-Brey I, Santarella-Mellwig R, Schorb M, Boermel M, Mocaer K, Beckwith MS, Templin RM, Gross V, Pape C, Tischer C, Frankish J, Horvat NK, Laketa V, Stanifer M, Boulant S, Ruggieri A, Chatel-Chaix L, Schwab Y, Bartenschlager R (2020) Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies. Cell Host Microbe 28(6):853–866.e5. https://doi.org/10.1016/j.chom.2020.11.003
doi: 10.1016/j.chom.2020.11.003 pubmed: 33245857 pmcid: 7670925
Pizzato M, Erlwein O, Bonsall D, Kaye S, Muir D, McClure MO (2009) A one-step SYBR green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J Virol Methods 156(1–2):1–7. https://doi.org/10.1016/j.jviromet.2008.10.012
doi: 10.1016/j.jviromet.2008.10.012 pubmed: 19022294
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
doi: 10.1038/nmeth.2019 pubmed: 22743772
Perez-Pepe M, Slomiansky V, Loschi M, Luchelli L, Neme M, Thomas MG, Boccaccio GL (2012) BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis. PLoS One 7(12):e51495. https://doi.org/10.1371/journal.pone.0051495
doi: 10.1371/journal.pone.0051495 pubmed: 23284702 pmcid: 3527446
Ohshima D, Arimoto-Matsuzaki K, Tomida T, Takekawa M, Ichikawa K (2015) Spatio-temporal dynamics and mechanisms of stress granule assembly. PLoS Comput Biol 11(6):e1004326. https://doi.org/10.1371/journal.pcbi.1004326
doi: 10.1371/journal.pcbi.1004326 pubmed: 26115353 pmcid: 4482703
Coutu DL, Schroeder T (2013) Probing cellular processes by long-term live imaging--historic problems and current solutions. J Cell Sci 126(Pt 17):3805–3815. https://doi.org/10.1242/jcs.118349
doi: 10.1242/jcs.118349 pubmed: 23943879
Skylaki S, Hilsenbeck O, Schroeder T (2016) Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol 34(11):1137–1144. https://doi.org/10.1038/nbt.3713
doi: 10.1038/nbt.3713 pubmed: 27824848
Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, Maayan I, Tanouchi Y, Ashley EA, Covert MW (2016) Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput Biol 12(11):e1005177. https://doi.org/10.1371/journal.pcbi.1005177
doi: 10.1371/journal.pcbi.1005177 pubmed: 27814364 pmcid: 5096676
Han H, Wu G, Li Y, Zi Z (2019) eDetect: a fast error detection and correction tool for live cell imaging data analysis. iScience 13:1–8. https://doi.org/10.1016/j.isci.2019.02.004
doi: 10.1016/j.isci.2019.02.004 pubmed: 30785030 pmcid: 6383125
Mitchell C, Caroff L, Solis-Lemus JA, Reyes-Aldasoro CC, Vigilante A, Warburton F, de Chaumont F, Dufour A, Dallongeville S, Olivo-Marin JC, Knight R (2020) Cell tracking profiler - a user-driven analysis framework for evaluating 4D live-cell imaging data. J Cell Sci 133(22):jcs241422. https://doi.org/10.1242/jcs.241422
doi: 10.1242/jcs.241422 pubmed: 33093241 pmcid: 7710012

Auteurs

Vera Magg (V)

Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany.

Philipp Klein (P)

Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany.

Alessia Ruggieri (A)

Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany. Alessia.Ruggieri@med.uni-heidelberg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH